Suppr超能文献

用于转录因子结合位点预测的基于知识的三体势

Knowledge-based three-body potential for transcription factor binding site prediction.

作者信息

Qin Wenyi, Zhao Guijun, Carson Matthew, Jia Caiyan, Lu Hui

机构信息

Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA.

Key Laboratory of Molecular Embryology, Ministry of Health & Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai 200040, People's Republic of China.

出版信息

IET Syst Biol. 2016 Feb;10(1):23-9. doi: 10.1049/iet-syb.2014.0066.

Abstract

A structure-based statistical potential is developed for transcription factor binding site (TFBS) prediction. Besides the direct contact between amino acids from TFs and DNA bases, the authors also considered the influence of the neighbouring base. This three-body potential showed better discriminate powers than the two-body potential. They validate the performance of the potential in TFBS identification, binding energy prediction and binding mutation prediction.

摘要

开发了一种基于结构的统计势用于转录因子结合位点(TFBS)预测。除了转录因子中的氨基酸与DNA碱基之间的直接接触外,作者还考虑了相邻碱基的影响。这种三体势比二体势具有更好的区分能力。他们验证了该势在TFBS识别、结合能预测和结合突变预测方面的性能。

相似文献

3
Predicting transcription factor specificity with all-atom models.利用全原子模型预测转录因子特异性。
Nucleic Acids Res. 2008 Nov;36(19):6209-17. doi: 10.1093/nar/gkn589. Epub 2008 Oct 1.
8
A statistical analysis of the TRANSFAC database.对TRANSFAC数据库的统计分析。
Biosystems. 2005 Aug;81(2):137-54. doi: 10.1016/j.biosystems.2005.03.003.

本文引用的文献

6
A knowledge-based orientation potential for transcription factor-DNA docking.基于知识的转录因子-DNA 对接潜能。
Bioinformatics. 2013 Feb 1;29(3):322-30. doi: 10.1093/bioinformatics/bts699. Epub 2012 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验