Dutta Naba K, Choudhury Namita R, Truong My Y, Kim Misook, Elvin Christopher M, Hill Anita J
Ian Wark Research Institute, ARC Special Research Centre, Mawson Lakes Campus, University of South Australia, Mawson Lakes, Adelaide, SA 5095, Australia.
Biomaterials. 2009 Oct;30(28):4868-76. doi: 10.1016/j.biomaterials.2009.06.019. Epub 2009 Jul 9.
Protein adsorption on surfaces is a fundamental step in many applications. While various methods such as lithography, self assembly using nanoparticles, layer-by-layer attachment, etc. have been employed, here we report fabrication of controlled nanostructure of a new resilin-mimetic elastic protein rec1-resilin using physical approaches. We investigate the assembly, morphology and tunability of the nanostructure of adsorbed rec1-resilin architectures by atomic force microscopy (AFM) and scanning thermal microscopy (SThm) demonstrating that the protein conformation and structure during assembly can be controlled by tuning the physical conditions at the surface. Our findings show distinct morphology and height of monomolecular rec1-resilin film, dependent on substrate surface energy. We also show that these heights, a function of molecular orientation, can be maintained on swelling and drying.
蛋白质在表面的吸附是许多应用中的一个基本步骤。虽然已经采用了各种方法,如光刻、使用纳米颗粒的自组装、逐层附着等,但在此我们报告了使用物理方法制备一种新型类弹性蛋白rec1-弹性蛋白的可控纳米结构。我们通过原子力显微镜(AFM)和扫描热显微镜(SThm)研究了吸附的rec1-弹性蛋白结构的纳米结构的组装、形态和可调性,证明了在组装过程中蛋白质的构象和结构可以通过调节表面的物理条件来控制。我们的研究结果表明,单分子rec1-弹性蛋白膜具有独特的形态和高度,这取决于底物表面能。我们还表明,这些高度作为分子取向的函数,在膨胀和干燥过程中可以保持。