文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

蛋白质基生物材料:分子设计与人工生产。

Protein-Based Biological Materials: Molecular Design and Artificial Production.

机构信息

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore637553.

School of Biological Sciences, NTU, Singapore637551.

出版信息

Chem Rev. 2023 Mar 8;123(5):2049-2111. doi: 10.1021/acs.chemrev.2c00621. Epub 2023 Jan 24.


DOI:10.1021/acs.chemrev.2c00621
PMID:36692900
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9999432/
Abstract

Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.

摘要

由化石燃料制成的聚合物材料与 20 世纪工业活动的发展密切相关,因此也改变了我们的生活方式。虽然这带来了许多好处,但这些材料的制造和处理带来了巨大的可持续发展挑战。因此,迫切需要以更可持续的方式生产、其降解产物对环境无害的材料。天然生物聚合物——在某些性能上可以与合成聚合物相媲美甚至超越——为我们提供了巨大的灵感来源。它们由天然化学品在良性环境条件下制成,其降解产物是无害的。在这些材料可以被合成复制之前,阐明其化学设计和生物制造过程是至关重要的。对于基于蛋白质的材料,这意味着获得蛋白质结构单元的完整序列,这在历史上需要几十年的研究。因此,我们从获得承重蛋白质一级序列的早期努力的历史角度开始综述,然后介绍大大加速细胞外蛋白质测序的最新测序和蛋白质组学技术的发展。接下来,我们介绍了四大类蛋白质材料,即纤维材料、具有高可逆变形性的生物弹性体、硬质块状材料和生物胶粘剂。在每一类中,我们重点讨论一级和二级结构设计,并讨论它们与机械响应的相互作用。我们最后讨论了使用生物技术和合成生物学人工生产蛋白质材料的早期和最新研究,包括初创公司以经济可行的方式扩大蛋白质材料生产的当前进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/0c0e8e624f88/cr2c00621_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/3b96670a6606/cr2c00621_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/7aef997b2fbc/cr2c00621_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/af709853d60e/cr2c00621_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/716e8efbb3b5/cr2c00621_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/1ca07fd68d66/cr2c00621_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/8edf0c428e39/cr2c00621_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/f662c6ca4259/cr2c00621_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/6717644878b3/cr2c00621_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/40ff7c1a0230/cr2c00621_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/02c4956d5165/cr2c00621_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/b40a09e040e3/cr2c00621_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/b1460c4172bb/cr2c00621_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/56f4adceab11/cr2c00621_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/0c0e8e624f88/cr2c00621_0014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/3b96670a6606/cr2c00621_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/7aef997b2fbc/cr2c00621_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/af709853d60e/cr2c00621_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/716e8efbb3b5/cr2c00621_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/1ca07fd68d66/cr2c00621_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/8edf0c428e39/cr2c00621_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/f662c6ca4259/cr2c00621_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/6717644878b3/cr2c00621_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/40ff7c1a0230/cr2c00621_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/02c4956d5165/cr2c00621_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/b40a09e040e3/cr2c00621_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/b1460c4172bb/cr2c00621_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/56f4adceab11/cr2c00621_0013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c0e/9999432/0c0e8e624f88/cr2c00621_0014.jpg

相似文献

[1]
Protein-Based Biological Materials: Molecular Design and Artificial Production.

Chem Rev. 2023-3-8

[2]
The Minderoo-Monaco Commission on Plastics and Human Health.

Ann Glob Health. 2023

[3]
Bridging Nature and Engineering: Protein-Derived Materials for Bio-Inspired Applications.

Biomimetics (Basel). 2024-6-20

[4]
Mussel Byssus Structure-Function and Fabrication as Inspiration for Biotechnological Production of Advanced Materials.

Biotechnol J. 2018-8-24

[5]
Developing synthetic biology for industrial biotechnology applications.

Biochem Soc Trans. 2020-2-28

[6]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

[7]
Biotechnology-a sustainable alternative for chemical industry.

Biotechnol Adv. 2005-11

[8]
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).

J Phys Condens Matter. 2008-2-13

[9]
Establishing Chlamydomonas reinhardtii as an industrial biotechnology host.

Plant J. 2015-5

[10]
Biocommodity Engineering.

Biotechnol Prog. 1999-10-1

引用本文的文献

[1]
Quality Evaluation Based Simulation Selection (QEBSS) for analysis of conformational ensembles and dynamics of multidomain proteins.

Commun Chem. 2025-8-10

[2]
Entropy-driven denaturation enables sustainable protein regeneration through rapid gel-solid transition.

Nat Commun. 2025-7-26

[3]
Hydrogel particle-based protein display enabled by particle-templated emulsification.

RSC Adv. 2025-7-23

[4]
Enhancing Silk Fibroin Hydrogel Mechanical Properties through Biomimetic Mineralization by Self-Assembled Catalytic Complexes.

ACS Omega. 2025-5-20

[5]
Harnessing peptide-cellulose interactions to tailor the performance of self-assembled, injectable hydrogels.

Mol Syst Des Eng. 2025-6-2

[6]
Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts:

Chem Rev. 2025-5-28

[7]
Electrochemical-Genetic Programming of Protein-Based Magnetic Soft Robots for Active Drug Delivery.

Adv Sci (Weinh). 2025-7

[8]
Cephalopod proteins for bioinspired and sustainable biomaterials design.

Mater Today Bio. 2025-3-8

[9]
Bioactive hemostatic materials: a new strategy for promoting wound healing and tissue regeneration.

MedComm (2020). 2025-3-22

[10]
Conserved leucine-rich repeat proteins in the adhesive projectile slime of velvet worms.

Proc Natl Acad Sci U S A. 2025-3-25

本文引用的文献

[1]
Biological Materials Processing: Time-Tested Tricks for Sustainable Fiber Fabrication.

Chem Rev. 2023-3-8

[2]
Molecular Insights into the Self-Assembly of Block Copolymer Suckerin Polypeptides into Nanoconfined β-Sheets.

Small. 2022-8

[3]
Complete Sequences of the Velvet Worm Slime Proteins Reveal that Slime Formation is Enabled by Disulfide Bonds and Intrinsically Disordered Regions.

Adv Sci (Weinh). 2022-6

[4]
Nanocapsules Produced by Nanoprecipitation of Designed Suckerin-Silk Fusion Proteins.

ACS Macro Lett. 2021-5-18

[5]
Coassembly of a New Insect Cuticular Protein and Chitosan via Liquid-Liquid Phase Separation.

Biomacromolecules. 2022-6-13

[6]
Carbon-negative production of acetone and isopropanol by gas fermentation at industrial pilot scale.

Nat Biotechnol. 2022-3

[7]
Phase-separating peptides for direct cytosolic delivery and redox-activated release of macromolecular therapeutics.

Nat Chem. 2022-3

[8]
Microfluidic-like fabrication of metal ion-cured bioadhesives by mussels.

Science. 2021-10-8

[9]
Bioinspired short peptide hydrogel for versatile encapsulation and controlled release of growth factor therapeutics.

Acta Biomater. 2021-12

[10]
Concentration-Independent Multivalent Targeting of Cancer Cells by Genetically Encoded Core-Crosslinked Elastin/Resilin-like Polypeptide Micelles.

Biomacromolecules. 2021-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索