Morin Guillaume, Wang Yuheng, Ona-Nguema Georges, Juillot Farid, Calas Guillaume, Menguy Nicolas, Aubry Emmanuel, Bargar John R, Brown Gordon E
Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), UMR 7590, CNRS, Université Paris 6, IPGP, 140 rue de Lourmel, 75015 Paris, France.
Langmuir. 2009 Aug 18;25(16):9119-28. doi: 10.1021/la900655v.
Arsenic sorption onto iron oxide spinels such as magnetite could contribute to immobilization of arsenite (AsO3(3-)), the reduced, highly toxic form of arsenic in contaminated anoxic groundwaters, as well as to putative remediation processes. Nanocrystalline magnetite (<20 nm) is known to exhibit higher efficiency for arsenite sorption than larger particles, sorbing as much as approximately 20 micromol/m2 of arsenite. To improve our understanding of this process, we investigated the molecular level structure of As(III)-containing sorption products on two types of fine-grained magnetite: (1) a biogenic one with an average particle diameter of 34 nm produced by reduction of lepidocrocite (gamma-FeOOH) by Shewanella putrefaciens and (2) a synthetic, abiotic, nanocrystalline magnetite with an average particle diameter of 11 nm. Results from extended X-ray absorption spectroscopy (EXAFS) for both types of magnetite with As(III) surface coverages of up to 5 micromol/m2 indicate that As(III) forms dominantly inner-sphere, tridentate, hexanuclear, corner-sharing surface complexes (3C) in which AsO3 pyramids occupy vacant tetrahedral sites on octahedrally terminated {111} surfaces of magnetite. Formation of this type of surface complex results in a decrease in dissolved As(III) concentration below the maximum concentration level recommended by the World Health Organization (10 microg/L), which corresponds to As(III) surface coverages of 0.16 and 0.19 micromol/m2 in our experiments. In addition, high-resolution transmission electron microscopy (HRTEM) coupled with energy dispersive X-ray spectroscopy (EDXS) analyses revealed the occurrence of an amorphous As(III)-rich surface precipitate forming at As(III) surface coverages as low as 1.61 micromol/m2. This phase hosts the majority of adsorbed arsenite at surface coverages exceeding the theoretical maximum site density of vacant tetrahedral sites on the magnetite {111} surface (3.2 sites/nm2 or 5.3 micromol/m2). This finding helps to explain the exceptional As(III) sorption capacity of nanocrystalline magnetite particles (>10 micromol/m2). However, the higher solubility of the amorphous surface precipitate compared to the 3C surface complexes causes a dramatic increase of dissolved As concentration for coverages above 1.9 micromol/m2.
砷吸附到诸如磁铁矿之类的氧化铁尖晶石上,可能有助于固定亚砷酸盐(AsO3(3-)),这是受污染缺氧地下水中砷的还原态、高毒性形式,也有助于相关的修复过程。已知纳米晶磁铁矿(<20纳米)对亚砷酸盐的吸附效率高于较大颗粒,能吸附多达约20微摩尔/平方米的亚砷酸盐。为了更好地理解这一过程,我们研究了两种细颗粒磁铁矿上含As(III)吸附产物的分子水平结构:(1)一种由腐败希瓦氏菌还原纤铁矿(γ-FeOOH)产生的生物成因磁铁矿,平均粒径为34纳米;(2)一种合成的、非生物的纳米晶磁铁矿,平均粒径为11纳米。对两种类型的磁铁矿进行扩展X射线吸收精细结构光谱(EXAFS)分析,其As(III)表面覆盖率高达5微摩尔/平方米,结果表明,As(III)主要形成内球型、三齿、六核、角共享表面络合物(3C),其中AsO3金字塔占据磁铁矿八面体终止{111}表面上的空四面体位置。这种类型表面络合物的形成导致溶解态As(III)浓度降至世界卫生组织推荐的最大浓度水平(10微克/升)以下,在我们的实验中,这对应于As(III)表面覆盖率为0.16和0.19微摩尔/平方米。此外,高分辨率透射电子显微镜(HRTEM)结合能量色散X射线光谱(EDXS)分析表明,在As(III)表面覆盖率低至1.61微摩尔/平方米时,会出现富含As(III)的非晶态表面沉淀。在表面覆盖率超过磁铁矿{111}表面空四面体位置的理论最大位点密度(3.2个位点/纳米2或5.3微摩尔/平方米)时,该相容纳了大部分吸附的亚砷酸盐。这一发现有助于解释纳米晶磁铁矿颗粒(>10微摩尔/平方米)异常的As(III)吸附能力。然而,与3C表面络合物相比,非晶态表面沉淀的溶解度更高,导致在覆盖率高于1.9微摩尔/平方米时,溶解态As浓度急剧增加。