Suppr超能文献

用于双模态成像的放射性标记氧化铁纳米颗粒的工程设计。

Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging.

作者信息

Ai Fanrong, Ferreira Carolina A, Chen Feng, Cai Weibo

机构信息

School of Mechanical & Electrical Engineering, Nanchang University, Jiangxi, China.

Department of Radiology, University of Wisconsin - Madison, Madison, WI, USA.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Jul;8(4):619-30. doi: 10.1002/wnan.1386. Epub 2015 Dec 22.

Abstract

Over the last decade, radiolabeled iron oxide nanoparticles have been developed as promising contrast agents for dual-modality positron emission tomography/magnetic resonance imaging (PET/MRI) or single-photon emission computed tomography/magnetic resonance imaging (SPECT/MRI). The combination of PET (or SPECT) with MRI can offer synergistic advantages for noninvasive, sensitive, high-resolution, and quantitative imaging, which is suitable for early detection of various diseases such as cancer. Here, we summarize the recent advances on radiolabeled iron oxide nanoparticles for dual-modality imaging, through the use of a variety of PET (and SPECT) isotopes by using both chelator-based and chelator-free radiolabeling techniques. WIREs Nanomed Nanobiotechnol 2016, 8:619-630. doi: 10.1002/wnan.1386.

摘要

在过去十年中,放射性标记的氧化铁纳米颗粒已被开发成为用于双模态正电子发射断层扫描/磁共振成像(PET/MRI)或单光子发射计算机断层扫描/磁共振成像(SPECT/MRI)的有前景的造影剂。PET(或SPECT)与MRI的结合可为无创、灵敏、高分辨率和定量成像提供协同优势,适用于癌症等各种疾病的早期检测。在此,我们通过使用基于螯合剂和无螯合剂的放射性标记技术,利用多种PET(和SPECT)同位素,总结了用于双模态成像的放射性标记氧化铁纳米颗粒的最新进展。《WIREs纳米医学与纳米生物技术》2016年,8:619 - 630。doi:10.1002/wnan.1386 。

相似文献

1
Engineering of radiolabeled iron oxide nanoparticles for dual-modality imaging.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Jul;8(4):619-30. doi: 10.1002/wnan.1386. Epub 2015 Dec 22.
2
Radiolabeled iron oxide nanoparticles as dual-modality SPECT/MRI and PET/MRI agents.
Curr Top Med Chem. 2012;12(23):2694-702. doi: 10.2174/1568026611212230007.
3
Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI.
Nanomaterials (Basel). 2023 Jan 27;13(3):503. doi: 10.3390/nano13030503.
4
Integrity of (111)In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse.
Nucl Med Biol. 2015 Jan;42(1):65-70. doi: 10.1016/j.nucmedbio.2014.08.014. Epub 2014 Sep 6.
7
Nanoparticles and radiotracers: advances toward radionanomedicine.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Nov;8(6):872-890. doi: 10.1002/wnan.1402. Epub 2016 Mar 23.
8
Intrinsically germanium-69-labeled iron oxide nanoparticles: synthesis and in-vivo dual-modality PET/MR imaging.
Adv Mater. 2014 Aug 13;26(30):5119-23. doi: 10.1002/adma.201401372. Epub 2014 Jun 18.
10
Functional nanoparticles for magnetic resonance imaging.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016 Nov;8(6):814-841. doi: 10.1002/wnan.1400. Epub 2016 Apr 4.

引用本文的文献

2
Radiolabeling of bionanomaterials with technetium 99m: current state and future prospects.
Nanomedicine (Lond). 2024 Jul 14;19(17):1569-1580. doi: 10.1080/17435889.2024.2368454. Epub 2024 Jul 16.
4
Molecular Imaging of Matrix Metalloproteinase-2 in Atherosclerosis Using a Smart Multifunctional PET/MRI Nanoparticle.
Int J Nanomedicine. 2022 Dec 28;17:6773-6789. doi: 10.2147/IJN.S385679. eCollection 2022.
5
Nanoparticles and Radioisotopes: A Long Story in a Nutshell.
Pharmaceutics. 2022 Sep 23;14(10):2024. doi: 10.3390/pharmaceutics14102024.
6
3D bioprinting of nanoparticle-laden hydrogel scaffolds with enhanced antibacterial and imaging properties.
iScience. 2022 Aug 15;25(9):104947. doi: 10.1016/j.isci.2022.104947. eCollection 2022 Sep 16.
7
Iron oxide nanoparticles as multimodal imaging tools.
RSC Adv. 2019 Dec 6;9(69):40577-40587. doi: 10.1039/c9ra08612a. eCollection 2019 Dec 3.
8
Recent advances in engineering iron oxide nanoparticles for effective magnetic resonance imaging.
Bioact Mater. 2021 Oct 19;12:214-245. doi: 10.1016/j.bioactmat.2021.10.014. eCollection 2022 Jun.
10
Comparative Evaluation of Engineered Polypeptide Scaffolds in HER2-Targeting Magnetic Nanocarrier Delivery.
ACS Omega. 2021 Jun 10;6(24):16000-16008. doi: 10.1021/acsomega.1c01811. eCollection 2021 Jun 22.

本文引用的文献

1
Chelate-free metal ion binding and heat-induced radiolabeling of iron oxide nanoparticles.
Chem Sci. 2015 Jan 1;6(1):225-236. doi: 10.1039/c4sc02778g. Epub 2014 Sep 29.
3
Recent Advances in Higher-Order, Multimodal, Biomedical Imaging Agents.
Small. 2015 Sep 16;11(35):4445-61. doi: 10.1002/smll.201500735. Epub 2015 Jul 16.
4
Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.
Acc Chem Res. 2015 May 19;48(5):1276-85. doi: 10.1021/acs.accounts.5b00038. Epub 2015 Apr 29.
5
Positron emission tomography imaging using radiolabeled inorganic nanomaterials.
Acc Chem Res. 2015 Feb 17;48(2):286-94. doi: 10.1021/ar500362y. Epub 2015 Jan 30.
7
Integrity of (111)In-radiolabeled superparamagnetic iron oxide nanoparticles in the mouse.
Nucl Med Biol. 2015 Jan;42(1):65-70. doi: 10.1016/j.nucmedbio.2014.08.014. Epub 2014 Sep 6.
9
From PET/CT to PET/MRI: advances in instrumentation and clinical applications.
Mol Pharm. 2014 Nov 3;11(11):3798-809. doi: 10.1021/mp500321h. Epub 2014 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验