Suppr超能文献

人类中微小RNA-转录因子前馈调节回路的全基因组调查

Genome-wide survey of microRNA-transcription factor feed-forward regulatory circuits in human.

作者信息

Re Angela, Corá Davide, Taverna Daniela, Caselle Michele

机构信息

CIBIO-Centre for Integrative Biology, University of Trento, I-38100 Trento, Italy.

出版信息

Mol Biosyst. 2009 Aug;5(8):854-67. doi: 10.1039/b900177h. Epub 2009 Jun 19.

Abstract

In this work, we describe a computational framework for the genome-wide identification and characterization of mixed transcriptional/post-transcriptional regulatory circuits in humans. We concentrated in particular on feed-forward loops (FFL), in which a master transcription factor regulates a microRNA, and together with it, a set of joint target protein coding genes. The circuits were assembled with a two step procedure. We first constructed separately the transcriptional and post-transcriptional components of the human regulatory network by looking for conserved over-represented motifs in human and mouse promoters, and 3'-UTRs. Then, we combined the two subnetworks looking for mixed feed-forward regulatory interactions, finding a total of 638 putative (merged) FFLs. In order to investigate their biological relevance, we filtered these circuits using three selection criteria: (I) GeneOntology enrichment among the joint targets of the FFL, (II) independent computational evidence for the regulatory interactions of the FFL, extracted from external databases, and (III) relevance of the FFL in cancer. Most of the selected FFLs seem to be involved in various aspects of organism development and differentiation. We finally discuss a few of the most interesting cases in detail.

摘要

在这项工作中,我们描述了一个用于全基因组鉴定和表征人类混合转录/转录后调控回路的计算框架。我们特别关注前馈环(FFL),其中一个主转录因子调控一个 microRNA,并且与之一起调控一组共同的靶蛋白编码基因。这些回路通过两步程序组装而成。我们首先通过在人类和小鼠启动子以及 3'-UTR 中寻找保守的过度表达基序,分别构建人类调控网络的转录和转录后组件。然后,我们合并这两个子网以寻找混合前馈调控相互作用,总共发现了 638 个假定的(合并的)FFL。为了研究它们的生物学相关性,我们使用三个选择标准对这些回路进行筛选:(I)FFL 共同靶标中的基因本体富集,(II)从外部数据库中提取的 FFL 调控相互作用的独立计算证据,以及(III)FFL 在癌症中的相关性。大多数选定的 FFL 似乎参与了生物体发育和分化的各个方面。我们最后详细讨论了一些最有趣的案例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/029a/2898627/fbb5d9953019/b900177h-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验