Suppr超能文献

基于傅里叶频移定理的互信息目标函数估计:在扩散张量成像中涡流变形校正的应用。

Estimation of mutual information objective function based on Fourier shift theorem: an application to eddy current distortion correction in diffusion tensor imaging.

机构信息

Department of Radiology, Thomas Jefferson University, Philadelphia, PA 19107, USA.

出版信息

Magn Reson Imaging. 2009 Nov;27(9):1281-92. doi: 10.1016/j.mri.2009.05.005. Epub 2009 Jul 15.

Abstract

Diffusion tensor imaging requires correction of eddy current distortion in diffusion-weighted images. An effective retrospective correction approach is to transform a diffusion-weighted image to maximize the mutual information (MI) between the transformed diffusion-weighted image and the corresponding T2-weighted image. In the literature, either linear interpolation or partial volume interpolation is applied to estimate the MI objective function. However, these interpolation methods induce artifacts to the MI objective function, thus compromising correction results. In this work, the MI objective function is estimated based on interpolation using Fourier shift theorem. This method eliminates the artifacts incurred with the aforementioned interpolation methods. The algorithm is further improved by approximating pixel values using their nearest neighbors in the up-sampled spatial domain, resulting in dramatically increased computational efficiency without compromising the correction results. The effects of varying the number of quantization levels and using Parzen window filtering to smooth the MI objective function are also investigated to obtain optimized algorithm parameters. The diffusion tensor image quality after applying the proposed distortion correction method is significantly improved visually.

摘要

弥散张量成像需要校正弥散加权图像中的涡流失真。一种有效的回溯校正方法是将扩散加权图像转换,以使转换后的扩散加权图像与相应的 T2 加权图像之间的互信息 (MI)最大化。在文献中,要么应用线性插值,要么应用部分体积插值来估计 MI 目标函数。然而,这些插值方法会给 MI 目标函数带来伪影,从而影响校正结果。在这项工作中,基于傅里叶平移定理的插值来估计 MI 目标函数。这种方法消除了上述插值方法带来的伪影。通过在上采样的空间域中使用最近邻来近似像素值,进一步改进了算法,从而在不影响校正结果的情况下显著提高了计算效率。还研究了改变量化级数的数量以及使用 Parzen 窗口滤波来平滑 MI 目标函数的效果,以获得优化的算法参数。应用所提出的失真校正方法后,弥散张量图像的质量在视觉上得到了显著改善。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验