Burrows Elizabeth H, Wong Weng-Keen, Fern Xiaoli, Chaplen Frank W R, Ely Roger L
Department of Biological and Ecological Engineering, Oregon State University, Corvallis, OR 97331, USA.
Biotechnol Prog. 2009 Jul-Aug;25(4):1009-17. doi: 10.1002/btpr.213.
The nitrogen (N) concentration and pH of culture media were optimized for increased fermentative hydrogen (H(2)) production from the cyanobacterium, Synechocystis sp. PCC 6803. The optimization was conducted using two procedures, response surface methodology (RSM), which is commonly used, and a memory-based machine learning algorithm, Q2, which has not been used previously in biotechnology applications. Both RSM and Q2 were successful in predicting optimum conditions that yielded higher H(2) than the media reported by Burrows et al., Int J Hydrogen Energy. 2008;33:6092-6099 optimized for N, S, and C (called EHB-1 media hereafter), which itself yielded almost 150 times more H(2) than Synechocystis sp. PCC 6803 grown on sulfur-free BG-11 media. RSM predicted an optimum N concentration of 0.63 mM and pH of 7.77, which yielded 1.70 times more H(2) than EHB-1 media when normalized to chlorophyll concentration (0.68 +/- 0.43 micromol H(2) mg Chl(-1) h(-1)) and 1.35 times more when normalized to optical density (1.62 +/- 0.09 nmol H(2) OD(730) (-1) h(-1)). Q2 predicted an optimum of 0.36 mM N and pH of 7.88, which yielded 1.94 and 1.27 times more H(2) than EHB-1 media when normalized to chlorophyll concentration (0.77 +/- 0.44 micromol H(2) mg Chl(-1) h(-1)) and optical density (1.53 +/- 0.07 nmol H(2) OD(730) (-1) h(-1)), respectively. Both optimization methods have unique benefits and drawbacks that are identified and discussed in this study.
为提高蓝藻聚球藻属PCC 6803的发酵产氢量,对培养基中的氮(N)浓度和pH值进行了优化。优化过程采用了两种方法,一种是常用的响应面法(RSM),另一种是基于记忆的机器学习算法Q2,该算法此前尚未应用于生物技术领域。RSM和Q2都成功预测了最佳条件,在此条件下产生的氢气量高于Burrows等人在《国际氢能杂志》2008年第33卷第6092 - 6099页报道的针对N、S和C优化的培养基(以下称为EHB - 1培养基),而EHB - 1培养基本身产生的氢气量几乎是在无硫BG - 11培养基上生长的聚球藻属PCC 6803的150倍。RSM预测最佳N浓度为0.63 mM,pH值为7.77,以叶绿素浓度归一化时,产生的氢气量比EHB - 1培养基多1.70倍(0.68±0.43 μmol H₂ mg Chl⁻¹ h⁻¹),以光密度归一化时多1.35倍(1.62±0.09 nmol H₂ OD₇₃₀⁻¹ h⁻¹)。Q2预测最佳N浓度为0.36 mM,pH值为7.88,以叶绿素浓度归一化时,产生的氢气量比EHB - 1培养基多1.94倍(0.77±0.44 μmol H₂ mg Chl⁻¹ h⁻¹),以光密度归一化时多1.27倍(1.53±0.07 nmol H₂ OD₇₃₀⁻¹ h⁻¹)。本研究识别并讨论了这两种优化方法各自独特的优缺点。