Suppr超能文献

利用酵母中的基因缺失适应性效应来理解不同生长条件下蛋白质复合物的模块化结构。

Exploiting gene deletion fitness effects in yeast to understand the modular architecture of protein complexes under different growth conditions.

作者信息

Pache Roland A, Babu M Madan, Aloy Patrick

机构信息

Structural and Computational Biology, Institute for Research in Biomedicine Barcelona, c/Baldiri Reixac 10-12, 08028 Barcelona, Spain.

出版信息

BMC Syst Biol. 2009 Jul 18;3:74. doi: 10.1186/1752-0509-3-74.

Abstract

BACKGROUND

Understanding how individual genes contribute towards the fitness of an organism is a fundamental problem in biology. Although recent genome-wide screens have generated abundant data on quantitative fitness for single gene knockouts, very few studies have systematically integrated other types of biological information to understand how and why deletion of specific genes give rise to a particular fitness effect. In this study, we combine quantitative fitness data for single gene knock-outs in yeast with large-scale interaction discovery experiments to understand the effect of gene deletion on the modular architecture of protein complexes, under different growth conditions.

RESULTS

Our analysis reveals that genes in complexes show more severe fitness effects upon deletion than other genes but, in contrast to what has been observed in binary protein-protein interaction networks, we find that this is not related to the number of complexes in which they are present. We also find that, in general, the core and attachment components of protein complexes are equally important for the complex machinery to function. However, when quantifying the importance of core and attachments in single complex variations, or isoforms, we observe that this global trend originates from either the core or the attachment components being more important for strain fitness, both being equally important or both being dispensable. Finally, our study reveals that different isoforms of a complex can exhibit distinct fitness patterns across growth conditions.

CONCLUSION

This study presents a powerful approach to unveil the molecular basis for various complex phenotypic profiles observed in gene deletion experiments. It also highlights some interesting cases of potential functional compensation between protein paralogues and suggests a new piece to fit into the histone-code puzzle.

摘要

背景

了解单个基因如何影响生物体的适应性是生物学中的一个基本问题。尽管最近的全基因组筛选已经产生了关于单基因敲除定量适应性的丰富数据,但很少有研究系统地整合其他类型的生物学信息,以了解特定基因的缺失如何以及为何会产生特定的适应性效应。在本研究中,我们将酵母中单基因敲除的定量适应性数据与大规模相互作用发现实验相结合,以了解在不同生长条件下基因缺失对蛋白质复合物模块化结构的影响。

结果

我们的分析表明,与其他基因相比,复合物中的基因在缺失时表现出更严重的适应性效应,但与二元蛋白质-蛋白质相互作用网络中观察到的情况不同,我们发现这与它们所在的复合物数量无关。我们还发现,一般来说,蛋白质复合物的核心和附着成分对于复合物机制发挥功能同样重要。然而,在量化单个复合物变体或异构体中核心和附着成分的重要性时,我们观察到这种总体趋势源于核心或附着成分对菌株适应性更重要、两者同样重要或两者都可有可无。最后,我们的研究表明,复合物的不同异构体在不同生长条件下可表现出不同的适应性模式。

结论

本研究提出了一种强大的方法来揭示基因敲除实验中观察到的各种复杂表型特征的分子基础。它还突出了蛋白质旁系同源物之间潜在功能补偿的一些有趣案例,并为组蛋白编码难题提供了新的拼图碎片。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c0e0/2717920/7527599bc675/1752-0509-3-74-1.jpg

相似文献

2
Protein complexity, gene duplicability and gene dispensability in the yeast genome.
Gene. 2007 Jan 31;387(1-2):109-17. doi: 10.1016/j.gene.2006.08.022. Epub 2006 Sep 14.
4
Yeast protein-protein interaction assays and screens.
Methods Mol Biol. 2011;754:145-65. doi: 10.1007/978-1-61779-154-3_8.
6
An experimental assay of the interactions of amino acids from orthologous sequences shaping a complex fitness landscape.
PLoS Genet. 2019 Apr 10;15(4):e1008079. doi: 10.1371/journal.pgen.1008079. eCollection 2019 Apr.
8
Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action.
Genome Biol. 2010;11(3):R30. doi: 10.1186/gb-2010-11-3-r30. Epub 2010 Mar 12.
9
Functional modules by relating protein interaction networks and gene expression.
Nucleic Acids Res. 2003 Nov 1;31(21):6283-9. doi: 10.1093/nar/gkg838.
10
Gene-nutrient interaction markedly influences yeast chronological lifespan.
Exp Gerontol. 2016 Dec 15;86:113-123. doi: 10.1016/j.exger.2016.04.012. Epub 2016 Apr 25.

引用本文的文献

1
The Pivotal Role of Protein Phosphorylation in the Control of Yeast Central Metabolism.
G3 (Bethesda). 2017 Apr 3;7(4):1239-1249. doi: 10.1534/g3.116.037218.
2
Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.
PLoS Biol. 2015 Nov 18;13(11):e1002299. doi: 10.1371/journal.pbio.1002299. eCollection 2015.
3
Increasing the precision of orthology-based complex prediction through network alignment.
PeerJ. 2014 May 29;2:e413. doi: 10.7717/peerj.413. eCollection 2014.
4
Evolutionary rate heterogeneity of core and attachment proteins in yeast protein complexes.
Genome Biol Evol. 2013;5(7):1366-75. doi: 10.1093/gbe/evt096.
5
Evaluation and properties of the budding yeast phosphoproteome.
Mol Cell Proteomics. 2012 Jun;11(6):M111.009555. doi: 10.1074/mcp.M111.009555. Epub 2012 Jan 27.
7
Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action.
Genome Biol. 2010;11(3):R30. doi: 10.1186/gb-2010-11-3-r30. Epub 2010 Mar 12.
8
Posttranslational regulation impacts the fate of duplicated genes.
Proc Natl Acad Sci U S A. 2010 Feb 16;107(7):2967-71. doi: 10.1073/pnas.0911603107. Epub 2009 Dec 22.
9
Toward the dynamic interactome: it's about time.
Brief Bioinform. 2010 Jan;11(1):15-29. doi: 10.1093/bib/bbp057. Epub 2010 Jan 8.

本文引用的文献

1
A complex-based reconstruction of the Saccharomyces cerevisiae interactome.
Mol Cell Proteomics. 2009 Jun;8(6):1361-81. doi: 10.1074/mcp.M800490-MCP200. Epub 2009 Jan 27.
2
High-quality binary protein interaction map of the yeast interactome network.
Science. 2008 Oct 3;322(5898):104-10. doi: 10.1126/science.1158684. Epub 2008 Aug 21.
4
The chemical genomic portrait of yeast: uncovering a phenotype for all genes.
Science. 2008 Apr 18;320(5874):362-5. doi: 10.1126/science.1150021.
5
Are protein complexes made of cores, modules and attachments?
Proteomics. 2008 Feb;8(3):425-34. doi: 10.1002/pmic.200700801.
6
Histone crosstalk between H2B monoubiquitination and H3 methylation mediated by COMPASS.
Cell. 2007 Dec 14;131(6):1084-96. doi: 10.1016/j.cell.2007.09.046.
7
8
The complex language of chromatin regulation during transcription.
Nature. 2007 May 24;447(7143):407-12. doi: 10.1038/nature05915.
9
The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics.
PLoS Comput Biol. 2007 Apr 20;3(4):e59. doi: 10.1371/journal.pcbi.0030059. Epub 2007 Feb 14.
10
H2B ubiquitylation in transcriptional control: a FACT-finding mission.
Genes Dev. 2007 Apr 1;21(7):737-43. doi: 10.1101/gad.1541507.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验