Pache Roland A, Babu M Madan, Aloy Patrick
Structural and Computational Biology, Institute for Research in Biomedicine Barcelona, c/Baldiri Reixac 10-12, 08028 Barcelona, Spain.
BMC Syst Biol. 2009 Jul 18;3:74. doi: 10.1186/1752-0509-3-74.
Understanding how individual genes contribute towards the fitness of an organism is a fundamental problem in biology. Although recent genome-wide screens have generated abundant data on quantitative fitness for single gene knockouts, very few studies have systematically integrated other types of biological information to understand how and why deletion of specific genes give rise to a particular fitness effect. In this study, we combine quantitative fitness data for single gene knock-outs in yeast with large-scale interaction discovery experiments to understand the effect of gene deletion on the modular architecture of protein complexes, under different growth conditions.
Our analysis reveals that genes in complexes show more severe fitness effects upon deletion than other genes but, in contrast to what has been observed in binary protein-protein interaction networks, we find that this is not related to the number of complexes in which they are present. We also find that, in general, the core and attachment components of protein complexes are equally important for the complex machinery to function. However, when quantifying the importance of core and attachments in single complex variations, or isoforms, we observe that this global trend originates from either the core or the attachment components being more important for strain fitness, both being equally important or both being dispensable. Finally, our study reveals that different isoforms of a complex can exhibit distinct fitness patterns across growth conditions.
This study presents a powerful approach to unveil the molecular basis for various complex phenotypic profiles observed in gene deletion experiments. It also highlights some interesting cases of potential functional compensation between protein paralogues and suggests a new piece to fit into the histone-code puzzle.
了解单个基因如何影响生物体的适应性是生物学中的一个基本问题。尽管最近的全基因组筛选已经产生了关于单基因敲除定量适应性的丰富数据,但很少有研究系统地整合其他类型的生物学信息,以了解特定基因的缺失如何以及为何会产生特定的适应性效应。在本研究中,我们将酵母中单基因敲除的定量适应性数据与大规模相互作用发现实验相结合,以了解在不同生长条件下基因缺失对蛋白质复合物模块化结构的影响。
我们的分析表明,与其他基因相比,复合物中的基因在缺失时表现出更严重的适应性效应,但与二元蛋白质-蛋白质相互作用网络中观察到的情况不同,我们发现这与它们所在的复合物数量无关。我们还发现,一般来说,蛋白质复合物的核心和附着成分对于复合物机制发挥功能同样重要。然而,在量化单个复合物变体或异构体中核心和附着成分的重要性时,我们观察到这种总体趋势源于核心或附着成分对菌株适应性更重要、两者同样重要或两者都可有可无。最后,我们的研究表明,复合物的不同异构体在不同生长条件下可表现出不同的适应性模式。
本研究提出了一种强大的方法来揭示基因敲除实验中观察到的各种复杂表型特征的分子基础。它还突出了蛋白质旁系同源物之间潜在功能补偿的一些有趣案例,并为组蛋白编码难题提供了新的拼图碎片。