Suppr超能文献

利用量子化学计算预测硝基芳香族化合物的热稳定性。

On the prediction of thermal stability of nitroaromatic compounds using quantum chemical calculations.

机构信息

Laboratoire d'Electrochimie et Chimie Analytique, CNRS UMR-7575, Ecole Nationale Supérieure de Chimie de Paris, 75231 Paris Cedex 05, France.

出版信息

J Hazard Mater. 2009 Nov 15;171(1-3):845-50. doi: 10.1016/j.jhazmat.2009.06.088. Epub 2009 Jun 23.

Abstract

This work presents a new approach to predict thermal stability of nitroaromatic compounds based on quantum chemical calculations and on quantitative structure-property relationship (QSPR) methods. The data set consists of 22 nitroaromatic compounds of known decomposition enthalpy (taken as a macroscopic property related to explosibility) obtained from differential scanning calorimetry. Geometric, electronic and energetic descriptors have been selected and computed using density functional theory (DFT) calculation to describe the 22 molecules. First approach consisted in looking at their linear correlations with the experimental decomposition enthalpy. Molecular weight, electrophilicity index, electron affinity and oxygen balance appeared as the most correlated descriptors (respectively R(2)=0.76, 0.75, 0.71 and 0.64). Then multilinear regression was computed with these descriptors. The obtained model is a six-parameter equation containing descriptors all issued from quantum chemical calculations. The prediction is satisfactory with a correlation coefficient R(2) of 0.91 and a predictivity coefficient R(cv)(2) of 0.84 using a cross validation method.

摘要

这项工作提出了一种新的方法来预测基于量子化学计算和定量构效关系(QSPR)方法的硝基芳香族化合物的热稳定性。数据集由 22 种已知分解焓的硝基芳香族化合物组成(作为与爆炸性能相关的宏观性质),这些化合物是通过差示扫描量热法获得的。使用密度泛函理论(DFT)计算选择和计算了几何、电子和能量描述符,以描述 22 种分子。第一种方法是观察它们与实验分解焓的线性相关性。分子量、亲电性指数、电子亲合能和氧平衡似乎是最相关的描述符(分别为 R(2)=0.76、0.75、0.71 和 0.64)。然后,用这些描述符进行多元线性回归计算。得到的模型是一个六参数方程,包含来自量子化学计算的描述符。使用交叉验证方法,预测的相关系数 R(2)为 0.91,预测系数 R(cv)(2)为 0.84,预测效果令人满意。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验