Dîrtu Marinela M, Rotaru Aurelian, Gillard Damien, Linares Jorge, Codjovi Epiphane, Tinant Bernard, Garcia Yann
Unité de Chimie des Matériaux Inorganiques et Organiques, Département de Chimie, Université Catholique de Louvain, Place L. Pasteur 1, 1348 Louvain-la-Neuve, Belgium.
Inorg Chem. 2009 Aug 17;48(16):7838-52. doi: 10.1021/ic900814b.
One-dimensional (1D) coordination polymers of formula [Fe(NH(2)trz)(3)]A.nH(2)O, {A = TiF(6)(2-), n = 0.5 (1) and n = 1 (2); A = ZrF(6)(2-), n = 0.5 (3) and n = 0 (4); A = SnF(6)(2-), n = 0.5 (5) and n = 1 (6); A = TaF(7)(2-), n = 3 (7) and n = 2.5 (8); A = GeF(6)(2-), n = 1 (9) and n = 0.5 (10), NH(2)trz = 4-amino-1,2,4-triazole} have been synthesized, fully characterized, and their spin crossover behavior carefully studied by SQUID magnetometry, Mossbauer spectroscopy, and differential scanning calorimetry. These materials display an abrupt and hysteretic spin transition around 200 K on cooling, as well as a reversible thermochromic effect. Accurate spin transition curves were derived by (57)Fe Mossbauer spectroscopy considering the corrected f factors for the high-spin and low-spin states determined employing the Debye model. The unusual hysteresis width of 3 (28 K), was attributed to a dense hydrogen bonding network involving the ZrF(6)(2-) counteranion and the 1D chains, an organization which is also revealed in [Cu(NH(2)trz)(3)]ZrF(6).H(2)O (11). Trinuclear spin crossover compounds of formula Fe(3)(NH(2)trz)(10)(H(2)O)(2)(6).S {S = 1.5CH(3)OH (12), 0.5C(2)H(5)OH (13)} were also obtained. A structural property relationship was derived between the volume of the inserted counteranion and the transition temperature T(1/2) of the 1D chains. Two linear size regimes were identified for monovalent anions (0.04 <or= V (nm(3)) <or= 0.09) and for divalent anions (above V >or= 0.11 nm(3)) with saturation around T(1/2) = 200 K. These characteristics allowed us to derive an anion based database that is of interest for the prediction of the transition temperature of such functional switchable materials. Diffuse reflectivity measurements under hydrostatic pressure for 3,4 combined with calorimetric data allow an estimation of the electrostatic pressure between cationic chains and counteranions in the crystal lattice of these materials. The chain length distribution that ranges between 1 and 4 nm was also derived.
已合成了通式为[Fe(NH(2)trz)(3)]A·nH(2)O的一维(1D)配位聚合物,{A = TiF(6)(2-),n = 0.5(1)且n = 1(2);A = ZrF(6)(2-),n = 0.5(3)且n = 0(4);A = SnF(6)(2-),n = 0.5(5)且n = 1(6);A = TaF(7)(2-),n = 3(7)且n = 2.5(8);A = GeF(6)(2-),n = 1(9)且n = 0.5(10),NH(2)trz = 4 - 氨基 - 1,2,4 - 三唑},对其进行了全面表征,并通过超导量子干涉仪磁力测定法、穆斯堡尔光谱法和差示扫描量热法仔细研究了它们的自旋交叉行为。这些材料在冷却至约200 K时显示出突然且滞后的自旋转变,以及可逆的热致变色效应。考虑到采用德拜模型确定的高自旋和低自旋态的校正f因子,通过(57)Fe穆斯堡尔光谱法得出了精确的自旋转变曲线。异常的3(28 K)滞后宽度归因于涉及ZrF(6)(2-)抗衡阴离子和一维链的密集氢键网络,这种结构在[Cu(NH(2)trz)(3)]ZrF(6)·H(2)O(11)中也有体现。还获得了通式为Fe(3)(NH(2)trz)(10)(H(2)O)(2)(6)·S {S = 1.5CH(3)OH(12),0.5C(2)H(5)OH(13)}的三核自旋交叉化合物。得出了插入抗衡阴离子的体积与一维链的转变温度T(1/2)之间的结构 - 性质关系。确定了单价阴离子(0.04 ≤ V(nm(3))≤ 0.09)和二价阴离子(V ≥ 0.11 nm(3)以上)的两种线性尺寸范围,在T(1/2) = 200 K左右达到饱和。这些特性使我们能够得出一个基于阴离子的数据库,该数据库对于预测此类功能可切换材料的转变温度很有意义。对3、4在静水压力下的漫反射率测量结合量热数据,可以估算这些材料晶格中阳离子链与抗衡阴离子之间的静电压力。还得出了范围在1至4 nm之间的链长分布。