División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, AP 70-253, 04510-México, D,F,, México.
Mol Neurodegener. 2009 Jul 20;4:31. doi: 10.1186/1750-1326-4-31.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of unknown cause, characterized by the selective and progressive death of both upper and lower motoneurons, leading to a progressive paralysis. Experimental animal models of the disease may provide knowledge of the pathophysiological mechanisms and allow the design and testing of therapeutic strategies, provided that they mimic as close as possible the symptoms and temporal progression of the human disease. The principal hypotheses proposed to explain the mechanisms of motoneuron degeneration have been studied mostly in models in vitro, such as primary cultures of fetal motoneurons, organotypic cultures of spinal cord sections from postnatal rodents and the motoneuron-like hybridoma cell line NSC-34. However, these models are flawed in the sense that they do not allow a direct correlation between motoneuron death and its physical consequences like paralysis. In vivo, the most widely used model is the transgenic mouse that bears a human mutant superoxide dismutase 1, the only known cause of ALS. The major disadvantage of this model is that it represents about 2%-3% of human ALS. In addition, there is a growing concern on the accuracy of these transgenic models and the extrapolations of the findings made in these animals to the clinics. Models of spontaneous motoneuron disease, like the wobbler and pmn mice, have been used aiming to understand the basic cellular mechanisms of motoneuron diseases, but these abnormalities are probably different from those occurring in ALS. Therefore, the design and testing of in vivo models of sporadic ALS, which accounts for >90% of the disease, is necessary. The main models of this type are based on the excitotoxic death of spinal motoneurons and might be useful even when there is no definitive demonstration that excitotoxicity is a cause of human ALS. Despite their difficulties, these models offer the best possibility to establish valid correlations between cellular alterations and motor behavior, although improvements are still necessary in order to produce a reliable and integrative model that accurately reproduces the cellular mechanisms of motoneuron degeneration in ALS.
肌萎缩侧索硬化症(ALS)是一种病因不明的致命神经退行性疾病,其特征是上下运动神经元的选择性和进行性死亡,导致进行性瘫痪。该疾病的实验动物模型可以提供病理生理学机制的知识,并允许设计和测试治疗策略,前提是它们尽可能模拟人类疾病的症状和时间进展。解释运动神经元退化机制的主要假设已在体外模型中进行了大部分研究,例如胎儿运动神经元的原代培养物、新生啮齿动物脊髓切片的器官型培养物和运动神经元样杂交瘤细胞系 NSC-34。然而,这些模型存在缺陷,因为它们不允许将运动神经元死亡与其物理后果(如瘫痪)直接相关联。在体内,最广泛使用的模型是携带人类突变超氧化物歧化酶 1 的转基因小鼠,这是 ALS 的唯一已知原因。该模型的主要缺点是它代表了大约 2%-3%的人类 ALS。此外,人们越来越关注这些转基因模型的准确性,以及从这些动物中得出的发现对临床的推断。自发性运动神经元疾病模型,如 wobbler 和 pmn 小鼠,已被用于了解运动神经元疾病的基本细胞机制,但这些异常可能与 ALS 中发生的异常不同。因此,有必要设计和测试占疾病>90%的散发性 ALS 的体内模型。这种类型的主要模型基于脊髓运动神经元的兴奋性毒性死亡,即使没有明确证明兴奋性毒性是 ALS 的原因,它也可能有用。尽管存在困难,但这些模型提供了在细胞改变和运动行为之间建立有效相关性的最佳可能性,尽管仍需要改进,以产生一种可靠且综合的模型,该模型可准确再现 ALS 中运动神经元退化的细胞机制。