Suppr超能文献

丁酸盐改善肌萎缩侧索硬化症(ALS)细胞模型 NSC34-G93A 运动神经元样细胞的线粒体呼吸能力。

Butyrate Ameliorates Mitochondrial Respiratory Capacity of The Motor-Neuron-like Cell Line NSC34-G93A, a Cellular Model for ALS.

机构信息

Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.

Bone-Muscle Research Center, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.

出版信息

Biomolecules. 2022 Feb 19;12(2):333. doi: 10.3390/biom12020333.

Abstract

Mitochondrial defects in motor neurons are pathological hallmarks of ALS, a neuromuscular disease with no effective treatment. Studies have shown that butyrate, a natural gut-bacteria product, alleviates the disease progression of ALS mice overexpressing a human ALS-associated mutation, hSOD1. In the current study, we examined the potential molecular mechanisms underlying the effect of butyrate on mitochondrial function in cultured motor-neuron-like NSC34 with overexpression of hSOD1 (NSC34-G93A). The live cell confocal imaging study demonstrated that 1mM butyrate in the culture medium improved the mitochondrial network with reduced fragmentation in NSC34-G93A cells. Seahorse analysis revealed that NSC34-G93A cells treated with butyrate showed an increase of 5-fold in mitochondrial Spare Respiratory Capacity with elevated Maximal Respiration. The time-dependent changes in the mRNA level of PGC1α, a master regulator of mitochondrial biogenesis, revealed a burst induction with an early increase (5-fold) at 4 h, a peak at 24 h (~19-fold), and maintenance at 48 h (8-fold) post-treatment. In line with the transcriptional induction of PGC1α, both the mRNA and protein levels of the key molecules (MTCO1, MTCO2, and COX4) related to the mitochondrial electron transport chain were increased following the butyrate treatment. Our data indicate that activation of the PGC1α signaling axis could be one of the molecular mechanisms underlying the beneficial effects of butyrate treatment in improving mitochondrial bioenergetics in NSC34-G93A cells.

摘要

线粒体缺陷是肌萎缩侧索硬化症(ALS)的病理学标志,这是一种尚无有效治疗方法的神经肌肉疾病。研究表明,丁酸盐是一种天然的肠道细菌产物,可减轻过度表达人类 ALS 相关突变 hSOD1 的 ALS 小鼠的疾病进展。在本研究中,我们研究了丁酸盐对过度表达 hSOD1 的培养运动神经元样 NSC34(NSC34-G93A)中线粒体功能的潜在分子机制。活细胞共聚焦成像研究表明,培养基中 1mM 的丁酸盐可改善 NSC34-G93A 细胞中线粒体网络,减少碎片化。 Seahorse 分析表明,用丁酸盐处理的 NSC34-G93A 细胞显示线粒体备用呼吸能力增加了约 5 倍,最大呼吸能力也增加了。PGC1α(线粒体生物发生的主调节因子)的 mRNA 水平随时间的变化显示出爆发诱导,在 4 小时时有早期增加(约 5 倍),24 小时时有峰值(约 19 倍),处理后 48 小时维持(8 倍)。与 PGC1α 的转录诱导一致,丁酸盐处理后与线粒体电子传递链相关的关键分子(MTCO1、MTCO2 和 COX4)的 mRNA 和蛋白水平均增加。我们的数据表明,PGC1α 信号轴的激活可能是丁酸盐治疗改善 NSC34-G93A 细胞线粒体生物能量学的有益作用的分子机制之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d251/8869540/68c6d8028ce5/biomolecules-12-00333-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验