Huntington K W, Eiler J M, Affek H P, Guo W, Bonifacie M, Yeung L Y, Thiagarajan N, Passey B, Tripati A, Daëron M, Came R
Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA.
J Mass Spectrom. 2009 Sep;44(9):1318-29. doi: 10.1002/jms.1614.
The geochemistry of multiply substituted isotopologues ('clumped-isotope' geochemistry) examines the abundances in natural materials of molecules, formula units or moieties that contain more than one rare isotope (e.g. (13)C(18)O(16)O, (18)O(18)O, (15)N(2), (13)C(18)O(16)O(2) (2-)). Such species form the basis of carbonate clumped-isotope thermometry and undergo distinctive fractionations during a variety of natural processes, but initial reports have provided few details of their analysis. In this study, we present detailed data and arguments regarding the theoretical and practical limits of precision, methods of standardization, instrument linearity and related issues for clumped-isotope analysis by dual-inlet gas-source isotope ratio mass spectrometry (IRMS). We demonstrate long-term stability and subtenth per mil precision in 47/44 ratios for counting systems consisting of a Faraday cup registered through a 10(12) ohm resistor on three Thermo-Finnigan 253 IRMS systems. Based on the analyses of heated CO(2) gases, which have a stochastic distribution of isotopes among possible isotopologues, we document and correct for (1) isotopic exchange among analyte CO(2) molecules and (2) subtle nonlinearity in the relationship between actual and measured 47/44 ratios. External precisions of approximately 0.01 per thousand are routinely achieved for measurements of the mass-47 anomaly (a measure mostly of the abundance anomaly of (13)C-(18)O bonds) and follow counting statistics. The present technical limit to precision intrinsic to our methods and instrumentation is approximately 5 parts per million (ppm), whereas precisions of measurements of heterogeneous natural materials are more typically approximately 10 ppm (both 1 s.e.). These correspond to errors in carbonate clumped-isotope thermometry of +/-1.2 degrees C and +/-2.4 degrees C, respectively.
多重取代同位素异构体的地球化学(“聚集同位素”地球化学)研究的是天然物质中含有不止一种稀有同位素的分子、化学式单元或部分的丰度(例如(13)C(18)O(16)O、(18)O(18)O、(15)N(2)、(13)C(18)O(16)O(2)(2 -))。这些物种构成了碳酸盐聚集同位素测温法的基础,并且在各种自然过程中经历独特的分馏作用,但最初的报告几乎没有提供关于其分析的详细信息。在本研究中,我们给出了关于双进样气体源同位素比率质谱法(IRMS)进行聚集同位素分析时精度的理论和实际限制、标准化方法、仪器线性及相关问题的详细数据和论证。我们证明了由三个赛默飞世尔253 IRMS系统上通过一个10(12)欧姆电阻记录的法拉第杯组成的计数系统,在47/44比率上具有长期稳定性和小于千分之一的精度。基于对加热的CO(2)气体的分析,这些气体在可能的同位素异构体之间具有随机的同位素分布,我们记录并校正了(1)分析物CO(2)分子之间的同位素交换以及(2)实际与测量的47/44比率之间关系中的细微非线性。对于质量47异常(主要是(13)C-(18)O键的丰度异常的一种度量)的测量,通常可实现约千分之0.01的外部精度,并遵循计数统计规律。我们的方法和仪器所固有的当前精度技术极限约为百万分之5,而异质天然物质测量的精度通常更接近约百万分之10(均为1标准误差)。这些分别对应于碳酸盐聚集同位素测温法中±1.2摄氏度和±2.4摄氏度的误差。