Suppr超能文献

通过逆蒙特卡罗治疗计划减少调强质子治疗中的不确定性

Uncertainty reduction in intensity modulated proton therapy by inverse Monte Carlo treatment planning.

作者信息

Morávek Zdenek, Rickhey Mark, Hartmann Matthias, Bogner Ludwig

机构信息

Department of Radiation Oncology, University Hospital Regensburg, Germany.

出版信息

Phys Med Biol. 2009 Aug 7;54(15):4803-19. doi: 10.1088/0031-9155/54/15/011. Epub 2009 Jul 22.

Abstract

Treatment plans for intensity-modulated proton therapy may be sensitive to some sources of uncertainty. One source is correlated with approximations of the algorithms applied in the treatment planning system and another one depends on how robust the optimization is with regard to intra-fractional tissue movements. The irradiated dose distribution may substantially deteriorate from the planning when systematic errors occur in the dose algorithm. This can influence proton ranges and lead to improper modeling of the Braggpeak degradation in heterogeneous structures or particle scatter or the nuclear interaction part. Additionally, systematic errors influence the optimization process, which leads to the convergence error. Uncertainties with regard to organ movements are related to the robustness of a chosen beam setup to tissue movements on irradiation. We present the inverse Monte Carlo treatment planning system IKO for protons (IKO-P), which tries to minimize the errors described above to a large extent. Additionally, robust planning is introduced by beam angle optimization according to an objective function penalizing paths representing strongly longitudinal and transversal tissue heterogeneities. The same score function is applied to optimize spot planning by the selection of a robust choice of spots. As spots can be positioned on different energy grids or on geometric grids with different space filling factors, a variety of grids were used to investigate the influence on the spot-weight distribution as a result of optimization. A tighter distribution of spot weights was assumed to result in a more robust plan with respect to movements. IKO-P is described in detail and demonstrated on a test case and a lung cancer case as well. Different options of spot planning and grid types are evaluated, yielding a superior plan quality with dose delivery to the spots from all beam directions over optimized beam directions. This option shows a tighter spot-weight distribution and should therefore be less sensitive to movements compared to optimized directions. But accepting a slight loss in plan quality, the latter choice could potentially improve robustness even further by accepting only spots from the most proper direction. The choice of a geometric grid instead of an energy grid for spot positioning has only a minor influence on the plan quality, at least for the investigated lung case.

摘要

调强质子治疗的治疗计划可能对某些不确定性来源敏感。一个来源与治疗计划系统中应用的算法近似值相关,另一个来源取决于优化对于分次内组织运动的稳健程度。当剂量算法出现系统误差时,照射剂量分布可能会与计划有很大偏差。这会影响质子射程,并导致在异质结构中布拉格峰降解、粒子散射或核相互作用部分的建模不当。此外,系统误差会影响优化过程,从而导致收敛误差。关于器官运动的不确定性与所选射束设置对照射时组织运动的稳健性有关。我们提出了用于质子的逆蒙特卡罗治疗计划系统IKO(IKO-P),它试图在很大程度上最小化上述误差。此外,通过根据惩罚代表强烈纵向和横向组织异质性路径的目标函数进行射束角度优化来引入稳健计划。相同的评分函数用于通过选择稳健的光斑选择来优化光斑计划。由于光斑可以定位在不同的能量网格或具有不同空间填充因子的几何网格上,因此使用了各种网格来研究优化对光斑权重分布的影响。假设光斑权重分布更紧密会导致计划在运动方面更稳健。详细描述了IKO-P,并在一个测试案例和一个肺癌案例中进行了演示。评估了光斑计划和网格类型的不同选项,与优化射束方向相比,从所有射束方向向光斑进行剂量输送可产生更高的计划质量。此选项显示出更紧密的光斑权重分布,因此与优化方向相比,对运动的敏感性应更低。但是,接受计划质量的轻微损失,后一种选择通过仅接受来自最合适方向的光斑可能会进一步提高稳健性。对于光斑定位,选择几何网格而非能量网格对计划质量的影响较小,至少对于所研究的肺部案例是这样。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验