Suppr超能文献

筛选方法、形态特征和工程生物传感器在药物早期发现过程中的应用。

Application of screening methods, shape signatures and engineered biosensors in early drug discovery process.

机构信息

Department of Chemistry & Biochemistry, University of the Sciences in Philadelphia, 600 S. 43rd Street, Philadelphia, Pennsylvania 19104, USA.

出版信息

Pharm Res. 2009 Oct;26(10):2247-58. doi: 10.1007/s11095-009-9941-z. Epub 2009 Jul 22.

Abstract

PURPOSE

In this study, two unreported estrogen antagonists were identified using a combination of computational screening and a simple bacterial estrogen sensor.

METHODS

Molecules here presented were initially part of a group obtained from a library of over a half million chemical compounds, using the Shape Signatures method. The structures within this group were then clustered and compared to known antagonists based on their physico-chemical parameters, and possible binding modes of the compounds to the Estrogen Receptor alpha (ER alpha) were analyzed. Finally, thirteen candidate compounds were purchased, and two of them were shown to behave as potential subtype-selective estrogen antagonists using a set of bacterial estrogen biosensors, which included sensors for ER alpha, ER beta, and a negative control thyroid hormone beta biosensor. These activities were then analyzed using an ELISA assay against activated ER alpha in human MCF-7 cell extract.

RESULTS

Two new estrogen receptor antagonists were detected using in silico Shape Signatures method with an engineered subtype-selective bacterial estrogen biosensor and commercially available ELISA assay. Additional thyroid biosensor control experiments confirmed no compounds interacted with human thyroid receptor beta.

CONCLUSIONS

This work demonstrates an effective combination of computational analysis and simple bacterial screens for rapid identification of potential hormone-like therapeutics.

摘要

目的

在这项研究中,我们使用计算筛选和简单的细菌雌激素传感器相结合的方法,鉴定了两种未报道的雌激素拮抗剂。

方法

本文介绍的分子最初是从一个包含超过 50 万个化合物的文库中使用形状特征方法获得的一组分子的一部分。然后,根据这些分子的物理化学参数对该组内的分子进行聚类,并与已知的拮抗剂进行比较,并分析化合物与雌激素受体 alpha(ER alpha)的可能结合模式。最后,购买了 13 种候选化合物,其中两种化合物在一组细菌雌激素生物传感器中表现出作为潜在的亚型选择性雌激素拮抗剂的特性,该生物传感器包括 ER alpha、ER beta 和阴性对照甲状腺激素 beta 生物传感器。然后使用针对人 MCF-7 细胞提取物中激活的 ER alpha 的 ELISA 测定法分析这些活性。

结果

使用基于工程化的亚型选择性细菌雌激素生物传感器和市售 ELISA 测定法的计算形状特征方法,检测到两种新的雌激素受体拮抗剂。额外的甲状腺生物传感器对照实验证实没有化合物与人甲状腺受体 beta 相互作用。

结论

这项工作证明了计算分析和简单细菌筛选的有效结合,可快速鉴定潜在的激素样治疗药物。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验