Suppr超能文献

纳米孔微容器中的细胞封装和氧合作用。

Cell encapsulation and oxygenation in nanoporous microcontainers.

机构信息

UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.

出版信息

Biomed Microdevices. 2009 Dec;11(6):1205-12. doi: 10.1007/s10544-009-9338-0.

Abstract

With strides in stem cell biology, cell engineering and molecular therapy, the transplantation of cells to produce therapeutic molecules endogenously is an attractive and achievable alternative to the use of exogenous drugs. The encapsulation of such cell transplants in semi-permeable, nanoporous constructs is often required to protect them from immune attack and to prevent their proliferation in the host. However, effective graft immunoisolation has been mostly elusive owing to the absence of a high-throughput method to create precisely controlled, high-aspect-ratio nanopores. To address the clinical need for effective cell encapsulation and immunoisolation, we devised a biocompatible cell-encapsulating microcontainer and a method to create highly anisotropic nanopores in the microcontainer's surface. To evaluate the efficacy of these nanopores in oxygenating the encapsulated cells, we engineered 9L rat glioma cells to bioluminesce under hypoxic conditions. The methods described above should aid in evaluating the long term survival and efficacy of cellular grafts.

摘要

随着干细胞生物学、细胞工程和分子治疗的进步,将细胞移植以产生内源性治疗分子是一种有吸引力且可行的替代方法,可替代使用外源性药物。为了保护细胞免受免疫攻击并防止其在宿主中增殖,通常需要将此类细胞移植物封装在半透性、纳米多孔结构中。然而,由于缺乏高通量方法来创建精确控制的高纵横比纳米孔,因此有效移植免疫隔离一直难以实现。为了解决细胞有效封装和免疫隔离的临床需求,我们设计了一种生物相容性细胞封装微容器以及一种在微容器表面创建高各向异性纳米孔的方法。为了评估这些纳米孔在为封装细胞供氧方面的功效,我们设计了 9L 大鼠神经胶质瘤细胞在缺氧条件下生物发光。上述方法应有助于评估细胞移植物的长期存活率和功效。

相似文献

1
Cell encapsulation and oxygenation in nanoporous microcontainers.
Biomed Microdevices. 2009 Dec;11(6):1205-12. doi: 10.1007/s10544-009-9338-0.
2
MRI of regular-shaped cell-encapsulating polyhedral microcontainers.
Magn Reson Med. 2007 Dec;58(6):1283-7. doi: 10.1002/mrm.21431.
4
A nanoporous, transparent microcontainer for encapsulated islet therapy.
J Diabetes Sci Technol. 2009 Mar;3(2):297-303. doi: 10.1177/193229680900300210.
5
SU-8-based immunoisolative microcontainer with nanoslots defined by nanoimprint lithography.
J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom. 2009;27(6):2795-2800. doi: 10.1116/1.3258146.
6
Polycaprolactone Thin-Film Micro- and Nanoporous Cell-Encapsulation Devices.
ACS Nano. 2015 Jun 23;9(6):5675-82. doi: 10.1021/acsnano.5b00679. Epub 2015 May 14.
7
Update on immunoisolation cell therapy for CNS diseases.
Cell Transplant. 2001 Jan-Feb;10(1):3-24.
8
Oxygen supply to encapsulated therapeutic cells.
Adv Drug Deliv Rev. 2014 Apr;67-68:93-110. doi: 10.1016/j.addr.2014.02.007. Epub 2014 Feb 27.
9
A high-capacity cell macroencapsulation system supporting the long-term survival of genetically engineered allogeneic cells.
Biomaterials. 2014 Jan;35(2):779-91. doi: 10.1016/j.biomaterials.2013.09.071. Epub 2013 Oct 5.
10
Progress and challenges for cell encapsulation in brain tumour therapy.
Expert Opin Biol Ther. 2003 Jul;3(4):551-61. doi: 10.1517/14712598.3.4.551.

引用本文的文献

1
Oxygen transport in nanoporous SiN membrane compared to PDMS and polypropylene for microfluidic ECMO.
Biomed Microdevices. 2025 May 28;27(2):22. doi: 10.1007/s10544-025-00750-5.
2
Oxygen Transport in Nanoporous SiN Membrane Compared to PDMS and Polypropylene for Microfluidic ECMO.
bioRxiv. 2025 Jan 5:2025.01.04.631337. doi: 10.1101/2025.01.04.631337.
3
Biocompatibility of SU-8 and Its Biomedical Device Applications.
Micromachines (Basel). 2021 Jul 4;12(7):794. doi: 10.3390/mi12070794.
4
Toward Localized Biomarker Concentration Measurements.
IEEE Trans Magn. 2015 Feb;51(2):1-4. doi: 10.1109/TMAG.2014.2324993.
5
Cell microencapsulation with synthetic polymers.
J Biomed Mater Res A. 2015 Feb;103(2):846-59. doi: 10.1002/jbm.a.35205. Epub 2014 Aug 18.
6
Membranes to achieve immunoprotection of transplanted islets.
Front Biosci (Landmark Ed). 2014 Jan 1;19(1):49-76. doi: 10.2741/4195.
7
In vitro and in vivo evaluation of SU-8 biocompatibility.
Mater Sci Eng C Mater Biol Appl. 2013 Oct;33(7):4453-9. doi: 10.1016/j.msec.2013.07.001. Epub 2013 Jul 12.
8
Chemistry with spatial control using particles and streams().
RSC Adv. 2012 Oct 28;2(26):9707-9726. doi: 10.1039/C2RA20337E.
9
Modeling stem/progenitor cell-induced neovascularization and oxygenation around solid implants.
Tissue Eng Part C Methods. 2012 Jul;18(7):487-95. doi: 10.1089/ten.TEC.2011.0452. Epub 2012 Mar 2.
10
Encapsulated cell grafts to treat cellular deficiencies and dysfunction.
Crit Rev Biomed Eng. 2011;39(6):473-91. doi: 10.1615/critrevbiomedeng.v39.i6.10.

本文引用的文献

1
A nanoporous, transparent microcontainer for encapsulated islet therapy.
J Diabetes Sci Technol. 2009 Mar;3(2):297-303. doi: 10.1177/193229680900300210.
3
Non-invasive evaluation of alginate/poly-l-lysine/alginate microcapsules by magnetic resonance microscopy.
Biomaterials. 2007 May;28(15):2438-45. doi: 10.1016/j.biomaterials.2007.01.012. Epub 2007 Jan 8.
4
Pancreas islet transplantation in the genitourinary tract associated with renal transplantation: an experimental study.
Transplant Proc. 2006 Oct;38(8):2585-7. doi: 10.1016/j.transproceed.2006.08.068.
5
Self-assembled three dimensional radio frequency (RF) shielded containers for cell encapsulation.
Biomed Microdevices. 2005 Dec;7(4):341-5. doi: 10.1007/s10544-005-6076-9.
6
In vivo imaging of islet transplantation.
Nat Med. 2006 Jan;12(1):144-8. doi: 10.1038/nm1316. Epub 2005 Dec 25.
7
Causes of limited survival of microencapsulated pancreatic islet grafts.
J Surg Res. 2004 Sep;121(1):141-50. doi: 10.1016/j.jss.2004.02.018.
8
Cell therapy using encapsulated cells producing endostatin.
Acta Neurochir Suppl. 2003;88:137-41. doi: 10.1007/978-3-7091-6090-9_19.
10
Biocompatibility and biofouling of MEMS drug delivery devices.
Biomaterials. 2003 May;24(11):1959-67. doi: 10.1016/s0142-9612(02)00565-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验