UT Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd, Dallas, TX 75390, USA.
Biomed Microdevices. 2009 Dec;11(6):1205-12. doi: 10.1007/s10544-009-9338-0.
With strides in stem cell biology, cell engineering and molecular therapy, the transplantation of cells to produce therapeutic molecules endogenously is an attractive and achievable alternative to the use of exogenous drugs. The encapsulation of such cell transplants in semi-permeable, nanoporous constructs is often required to protect them from immune attack and to prevent their proliferation in the host. However, effective graft immunoisolation has been mostly elusive owing to the absence of a high-throughput method to create precisely controlled, high-aspect-ratio nanopores. To address the clinical need for effective cell encapsulation and immunoisolation, we devised a biocompatible cell-encapsulating microcontainer and a method to create highly anisotropic nanopores in the microcontainer's surface. To evaluate the efficacy of these nanopores in oxygenating the encapsulated cells, we engineered 9L rat glioma cells to bioluminesce under hypoxic conditions. The methods described above should aid in evaluating the long term survival and efficacy of cellular grafts.
随着干细胞生物学、细胞工程和分子治疗的进步,将细胞移植以产生内源性治疗分子是一种有吸引力且可行的替代方法,可替代使用外源性药物。为了保护细胞免受免疫攻击并防止其在宿主中增殖,通常需要将此类细胞移植物封装在半透性、纳米多孔结构中。然而,由于缺乏高通量方法来创建精确控制的高纵横比纳米孔,因此有效移植免疫隔离一直难以实现。为了解决细胞有效封装和免疫隔离的临床需求,我们设计了一种生物相容性细胞封装微容器以及一种在微容器表面创建高各向异性纳米孔的方法。为了评估这些纳米孔在为封装细胞供氧方面的功效,我们设计了 9L 大鼠神经胶质瘤细胞在缺氧条件下生物发光。上述方法应有助于评估细胞移植物的长期存活率和功效。