Imtiaz Nayeem, Stoddard William A, Day Steven W
Rochester Institute of Technology, Kate Gleason College of Engineering, Rochester, NY 14623, USA.
bioRxiv. 2025 Jan 5:2025.01.04.631337. doi: 10.1101/2025.01.04.631337.
Extracorporeal Membrane Oxygenation (ECMO) serves as a crucial intervention for patients with severe pulmonary dysfunction by facilitating oxygenation and carbon dioxide removal. While traditional ECMO systems are effective, their large priming volumes and significant blood-contacting surface areas can lead to complications, particularly in neonates and pediatric patients. Microfluidic ECMO systems offer a promising alternative by miniaturizing the ECMO technology, reducing blood volume requirements, and minimizing device surface area to improve safety and efficiency. This study investigates the oxygen transport performance of three membrane types- polydimethylsiloxane (PDMS), polypropylene, and a novel nanoporous silicon nitride (SiN) membrane-in a microfluidic ECMO platform. While nanoporous membranes rely on pore-mediated diffusion and PDMS on polymer lattice diffusion, results show no significant differences in device oxygenation efficiency (p > 0.05). Blood-side factors, including the diffusion rate of oxygen through the red blood cell (RBC) membrane, RBC residence time, and hemoglobin binding kinetics, were identified as primary bottlenecks. Even computational models of a hypothetical infinitely permeable membrane corroborate the limited impact of membrane material. These findings suggest a shift in ECMO design priorities from membrane material to blood-side enhancements. This research provides a foundation for optimizing ECMO systems.
体外膜肺氧合(ECMO)通过促进氧合和二氧化碳清除,对严重肺功能障碍患者起到关键的干预作用。虽然传统的ECMO系统有效,但其大预充量和显著的血液接触表面积会导致并发症,尤其是在新生儿和儿科患者中。微流控ECMO系统通过将ECMO技术小型化、减少血容量需求并最小化设备表面积来提高安全性和效率,提供了一种有前景的替代方案。本研究在微流控ECMO平台上研究了三种膜类型——聚二甲基硅氧烷(PDMS)、聚丙烯和新型纳米多孔氮化硅(SiN)膜——的氧传输性能。虽然纳米多孔膜依赖于孔介导的扩散,而PDMS依赖于聚合物晶格扩散,但结果显示设备氧合效率无显著差异(p>0.05)。血液侧因素,包括氧通过红细胞(RBC)膜的扩散速率、RBC停留时间和血红蛋白结合动力学,被确定为主要瓶颈。即使是假设的无限渗透膜的计算模型也证实了膜材料的影响有限。这些发现表明ECMO设计重点从膜材料转向血液侧的改进。本研究为优化ECMO系统奠定了基础。