Suppr超能文献

从分割的容积神经放射数据集自动构建 3D PDM 的框架。

A framework for automatic construction of 3D PDM from segmented volumetric neuroradiological data sets.

机构信息

State Key Laboratory of Robotics and System, Harbin Institute of Technology, 150080 Harbin, Heilongjiang, China.

出版信息

Comput Methods Programs Biomed. 2010 Mar;97(3):199-210. doi: 10.1016/j.cmpb.2009.06.003. Epub 2009 Jul 23.

Abstract

3D point distribution model (PDM) of subcortical structures can be applied in medical image analysis by providing priori-knowledge. However, accurate shape representation and point correspondence are still challenging for building 3D PDM. This paper presents a novel framework for the automated construction of 3D PDMs from a set of segmented volumetric images. First, a template shape is generated according to the spatial overlap. Then the corresponding landmarks among shapes are automatically identified by a novel hierarchical global-to-local approach, which combines iterative closest point based global registration and active surface model based local deformation to transform the template shape to all other shapes. Finally, a 3D PDM is constructed. Experiment results on four subcortical structures show that the proposed method is able to construct 3D PDMs with a high quality in compactness, generalization and specificity, and more efficient and effective than the state-of-art methods such as MDL and SPHARM.

摘要

基于体绘制的三维点分布模型(3D PDM)可以通过提供先验知识应用于医学图像分析。然而,对于构建 3D PDM,准确的形状表示和点对应仍然具有挑战性。本文提出了一种新颖的框架,用于从一组分割的体积图像中自动构建 3D PDM。首先,根据空间重叠生成模板形状。然后,通过一种新颖的分层全局到局部方法自动识别形状之间的对应地标,该方法将迭代最近点(ICP)全局配准和活动表面模型(ASM)局部变形相结合,将模板形状转换为所有其他形状。最后,构建 3D PDM。对四个皮质下结构的实验结果表明,与 MDL 和 SPHARM 等最先进的方法相比,所提出的方法能够以紧凑、通用和特异性的方式构建高质量的 3D PDM,并且更高效、更有效。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验