Suppr超能文献

神经网络逼近的一个积分上界。

An integral upper bound for neural network approximation.

作者信息

Kainen Paul C, Kůrková Vera

机构信息

Department of Mathematics, Georgetown University, Washington, DC 20057-1233, USA.

出版信息

Neural Comput. 2009 Oct;21(10):2970-89. doi: 10.1162/neco.2009.04-08-745.

Abstract

Complexity of one-hidden-layer networks is studied using tools from nonlinear approximation and integration theory. For functions with suitable integral representations in the form of networks with infinitely many hidden units, upper bounds are derived on the speed of decrease of approximation error as the number of network units increases. These bounds are obtained for various norms using the framework of Bochner integration. Results are applied to perceptron networks.

摘要

利用非线性逼近和积分理论的工具研究了单隐藏层网络的复杂性。对于具有无限多个隐藏单元的网络形式的具有适当积分表示的函数,随着网络单元数量的增加,推导出了逼近误差减小速度的上界。使用博赫纳积分框架针对各种范数获得了这些界。结果应用于感知器网络。

相似文献

1
An integral upper bound for neural network approximation.神经网络逼近的一个积分上界。
Neural Comput. 2009 Oct;21(10):2970-89. doi: 10.1162/neco.2009.04-08-745.
6
Belief propagation in networks of spiking neurons.脉冲神经元网络中的置信度传播
Neural Comput. 2009 Sep;21(9):2502-23. doi: 10.1162/neco.2009.08-08-837.
8
Minimization of error functionals over perceptron networks.感知器网络上误差泛函的最小化。
Neural Comput. 2008 Jan;20(1):252-70. doi: 10.1162/neco.2008.20.1.252.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验