Li Xiumin, Zhang Jie, Small Michael
Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
Chaos. 2009 Mar;19(1):013126. doi: 10.1063/1.3076394.
Most network models for neural behavior assume a predefined network topology and consist of almost identical elements exhibiting little heterogeneity. In this paper, we propose a self-organized network consisting of heterogeneous neurons with different behaviors or degrees of excitability. The synaptic connections evolve according to the spike-timing dependent plasticity mechanism and finally a sparse and active-neuron-dominant structure is observed. That is, strong connections are mainly distributed to the synapses from active neurons to inactive ones. We argue that this self-emergent topology essentially reflects the competition of different neurons and encodes the heterogeneity. This structure is shown to significantly enhance the coherence resonance and stochastic resonance of the entire network, indicating its high efficiency in information processing.
大多数用于神经行为的网络模型都假定了一个预定义的网络拓扑结构,并且由几乎相同的元素组成,几乎没有异质性。在本文中,我们提出了一种由具有不同行为或兴奋性程度的异质神经元组成的自组织网络。突触连接根据依赖于脉冲时间的可塑性机制进化,最终观察到一种稀疏且以活跃神经元为主导的结构。也就是说,强连接主要分布在从活跃神经元到不活跃神经元的突触上。我们认为这种自涌现的拓扑结构本质上反映了不同神经元之间的竞争并编码了异质性。这种结构被证明能显著增强整个网络的相干共振和随机共振,表明其在信息处理方面的高效率。