Fiori Simone
Faculty of Engineering, Perugia University, I-05100 Terni, Italy.
Neural Comput. 2003 Dec;15(12):2909-29. doi: 10.1162/089976603322518795.
In recent work, we introduced nonlinear adaptive activation function (FAN) artificial neuron models, which learn their activation functions in an unsupervised way by information-theoretic adapting rules. We also applied networks of these neurons to some blind signal processing problems, such as independent component analysis and blind deconvolution. The aim of this letter is to study some fundamental aspects of FAN units' learning by investigating the properties of the associated learning differential equation systems.
在最近的工作中,我们引入了非线性自适应激活函数(FAN)人工神经元模型,该模型通过信息论自适应规则以无监督方式学习其激活函数。我们还将这些神经元网络应用于一些盲信号处理问题,如独立分量分析和盲反卷积。这封信的目的是通过研究相关学习微分方程系统的性质来探讨FAN单元学习的一些基本方面。