Su Kuo-Liang, Liao Ya-Fan, Hung Hui-Chih, Liu Guang-Yaw
Department of Life Sciences and Institute of Genomics and Bioinformatics, National Chung-Hsing University, Taichung.
J Biol Chem. 2009 Sep 25;284(39):26768-77. doi: 10.1074/jbc.M109.007807. Epub 2009 Jul 27.
Ornithine decarboxylase (ODC) is the first enzyme involved in polyamine biosynthesis, and it catalyzes the decarboxylation of ornithine to putrescine. ODC is a dimeric enzyme, whereas antizyme inhibitor (AZI), a positive regulator of ODC that is homologous to ODC, exists predominantly as a monomer and lacks decarboxylase activity. The goal of this paper was to identify the essential amino acid residues that determine the dimerization of AZI. The nonconserved amino acid residues in the putative dimer interface of AZI (Ser-277, Ser-331, Glu-332, and Asp-389) were substituted with the corresponding residues in the putative dimer interface of ODC (Arg-277, Tyr-331, Asp-332, and Tyr-389, respectively). Analytical ultracentrifugation analysis was used to determine the size distribution of these AZI mutants. The size-distribution analysis data suggest that residue 331 may play a major role in the dimerization of AZI. Mutating Ser-331 to Tyr in AZI (AZI-S331Y) caused a shift from a monomer configuration to a dimer. Furthermore, in comparison with the single mutant AZI-S331Y, the AZI-S331Y/D389Y double mutant displayed a further reduction in the monomer-dimer K(d), suggesting that residue 389 is also crucial for AZI dimerization. Analysis of the triple mutant AZI-S331Y/D389Y/S277R showed that it formed a stable dimer (K(d) value = 1.3 microm). Finally, a quadruple mutant, S331Y/D389Y/S277R/E332D, behaved as a dimer with a K(d) value of approximately 0.1 microm, which is very close to that of the human ODC enzyme. The quadruple mutant, although forming a dimer, could still be disrupted by antizyme (AZ), further forming a heterodimer, and it could rescue the AZ-inhibited ODC activity, suggesting that the AZ-binding ability of the AZI dimer was retained.
鸟氨酸脱羧酶(ODC)是多胺生物合成过程中涉及的第一种酶,它催化鸟氨酸脱羧生成腐胺。ODC是一种二聚体酶,而抗酶抑制剂(AZI)作为ODC的一种正调控因子,与ODC同源,主要以单体形式存在且缺乏脱羧酶活性。本文的目的是确定决定AZI二聚化的必需氨基酸残基。将AZI假定二聚体界面中的非保守氨基酸残基(Ser-277、Ser-331、Glu-332和Asp-389)分别替换为ODC假定二聚体界面中的相应残基(分别为Arg-277、Tyr-331、Asp-332和Tyr-389)。采用分析型超速离心分析来确定这些AZI突变体的大小分布。大小分布分析数据表明,残基331可能在AZI的二聚化过程中起主要作用。将AZI中的Ser-331突变为Tyr(AZI-S331Y)导致从单体构象转变为二聚体。此外,与单突变体AZI-S331Y相比,AZI-S331Y/D389Y双突变体的单体-二聚体解离常数(K(d))进一步降低,表明残基389对AZI二聚化也至关重要。对三突变体AZI-S331Y/D389Y/S277R的分析表明,它形成了稳定的二聚体(K(d)值 = 1.3 微摩尔)。最后,四突变体S331Y/D389Y/S277R/E332D表现为二聚体,K(d)值约为0.1微摩尔,这与人类ODC酶的K(d)值非常接近。该四突变体虽然形成了二聚体,但仍可被抗酶(AZ)破坏,进一步形成异二聚体,并且它可以挽救被AZ抑制的ODC活性,这表明AZI二聚体的AZ结合能力得以保留。