Bondugula Rajkumar, Xu Dong
Digital Biology Laboratory, 110 C.S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
Comput Syst Bioinformatics Conf. 2008;7:195-202.
Solvent accessibility is an important structural feature for a protein. We propose a new method for solvent accessibility prediction that uses known structure and sequence information more efficiently. We first estimate the relative solvent accessibility of the query protein using fuzzy mean operator from the solvent accessibilities of known structure fragments that have similar sequences to the query protein. We then integrate the estimated solvent accessibility and the position specific scoring matrix of the query protein using a neural network. We tested our method on a large data set consisting of 3386 non-redundant proteins. The comparison with other methods show slightly improved prediction accuracies with our method. The resulting system does need not be re-trained when new data is available. We incorporated our method into the MUPRED system, which is available as a web server at http://digbio.missouri.edu/mupred.
溶剂可及性是蛋白质的一个重要结构特征。我们提出了一种新的溶剂可及性预测方法,该方法能更有效地利用已知的结构和序列信息。我们首先使用模糊均值算子,根据与查询蛋白质序列相似的已知结构片段的溶剂可及性,来估计查询蛋白质的相对溶剂可及性。然后,我们使用神经网络整合估计的溶剂可及性和查询蛋白质的位置特异性评分矩阵。我们在一个由3386个非冗余蛋白质组成的大数据集上测试了我们的方法。与其他方法的比较表明,我们的方法预测准确率略有提高。当有新数据可用时,所得系统无需重新训练。我们将我们的方法整合到了MUPRED系统中,该系统可作为一个网络服务器在http://digbio.missouri.edu/mupred上获取。