Suppr超能文献

检测与临床参数转录相关的通路。

Detecting pathways transcriptionally correlated with clinical parameters.

作者信息

Ulitsky Igor, Shamir Ron

机构信息

School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

出版信息

Comput Syst Bioinformatics Conf. 2008;7:249-58.

Abstract

The recent explosion in the number of clinical studies involving microarray data calls for novel computational methods for their dissection. Human protein interaction networks are rapidly growing and can assist in the extraction of functional modules from microarray data. We describe a novel methodology for extraction of connected network modules with coherent gene expression patterns that are correlated with a specific clinical parameter. Our approach suits both numerical (e.g., age or tumor size) and logical parameters (e.g., gender or mutation status). We demonstrate the method on a large breast cancer dataset, where we identify biologically-relevant modules related to nine clinical parameters including patient age, tumor size, and metastasis-free survival. Our method is capable of detecting disease-relevant pathways that could not be found using other methods. Our results support some previous hypotheses regarding the molecular pathways underlying diversity of breast tumors and suggest novel ones.

摘要

近期涉及微阵列数据的临床研究数量激增,这就需要新的计算方法来剖析这些数据。人类蛋白质相互作用网络正在迅速扩展,能够辅助从微阵列数据中提取功能模块。我们描述了一种全新的方法,用于提取具有与特定临床参数相关的连贯基因表达模式的连通网络模块。我们的方法适用于数值参数(如年龄或肿瘤大小)和逻辑参数(如性别或突变状态)。我们在一个大型乳腺癌数据集上展示了该方法,在其中我们识别出了与包括患者年龄、肿瘤大小和无转移生存期在内的九个临床参数相关的生物学相关模块。我们的方法能够检测出使用其他方法无法发现的与疾病相关的通路。我们的结果支持了先前一些关于乳腺肿瘤多样性潜在分子通路的假设,并提出了新的假设。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验