Suppr超能文献

水分子和电荷对尿嘧啶分子内质子转移的催化作用。

Catalysis effects of water molecules and of charge on intramolecular proton transfer of uracil.

机构信息

School of Chemistry and Chemical Engineering, University of Jinan, 250022 PR China.

出版信息

J Phys Chem B. 2009 Aug 27;113(34):11732-42. doi: 10.1021/jp9031833.

Abstract

In this work, the three most stable uracil isomers (U1, U2, and U3) and their neutral, positive, and negative charged multihydrates are chosen as research objects to investigate the tautomeric process between the most stable uracil, U1, and its two minor stable isomers, U2 and U3. By the study, deeper insight can be obtained regarding point mutations induced by uracil deformation. Toward the target, the activation energies of the intramolecular proton transfer (tautomeric process) as well as the catalysis effects of water molecules and of charges attached are investigated using density functional theory (DFT) calculations by means of the B3LYP exchange and correlation functions. Results reveal that water molecules hold a stronger catalysis effect on the proton transfer in these negative charged uracil hydrates than in the neutral counterparts. The optimal number of water molecules needed to catalyze the proton transfer is determined as two in the neutral hydrated systems, whereas it is three in the negative charged systems. Positive charge attachment, however, hinders the intramolecualr proton transfer of uracil, and the charge and the proton of uracil will transfer to the water clusters if water molecules are attached. Then the positive charged hydrates look more like U1a/b+[(H2O)n+H+] species in structure. Analysis reveals that it is the acceptance process of the last proton to determine the impossibility of proton transfer and result in the failure of tautomeric processes from cat-U1a-nw to cat-U2-nw and from cat-U1b-nw to cat-U3-nw. Detailed structural parameters and energy changes are discussed for the above different processes.

摘要

在这项工作中,选择了三种最稳定的尿嘧啶异构体(U1、U2 和 U3)及其中性、正电荷和负电荷多水合物作为研究对象,以研究最稳定的尿嘧啶 U1 与其两种次要稳定异构体 U2 和 U3 之间的互变异构过程。通过这项研究,可以更深入地了解由尿嘧啶变形引起的点突变。针对这一目标,使用密度泛函理论(DFT)计算方法,通过 B3LYP 交换和相关函数,研究了分子内质子转移(互变异构过程)的活化能以及水分子和所附加电荷的催化效应。结果表明,水分子对这些负电荷尿嘧啶水合物中质子转移的催化作用强于中性对应物。确定中性水合体系中催化质子转移所需的最佳水分子数为两个,而在负电荷体系中则为三个。然而,正电荷的附加会阻碍尿嘧啶的分子内质子转移,如果水分子被附加,尿嘧啶的电荷和质子将转移到水簇中。然后,正电荷水合物在结构上更类似于 U1a/b+[(H2O)n+H+] 物种。分析表明,是最后一个质子的接受过程决定了质子转移的不可能,并导致从 cat-U1a-nw 到 cat-U2-nw 和从 cat-U1b-nw 到 cat-U3-nw 的互变异构过程失败。详细讨论了上述不同过程的结构参数和能量变化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验