Departments of Chemistry and Medicinal Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA.
J Med Chem. 2009 Aug 27;52(16):5228-40. doi: 10.1021/jm900611t.
We describe here the design, synthesis, molecular modeling, and biological evaluation of a series of small molecule, nonpeptide inhibitors of SARS-CoV PLpro. Our initial lead compound was identified via high-throughput screening of a diverse chemical library. We subsequently carried out structure-activity relationship studies and optimized the lead structure to potent inhibitors that have shown antiviral activity against SARS-CoV infected Vero E6 cells. Upon the basis of the X-ray crystal structure of inhibitor 24-bound to SARS-CoV PLpro, a drug design template was created. Our structure-based modification led to the design of a more potent inhibitor, 2 (enzyme IC(50) = 0.46 microM; antiviral EC(50) = 6 microM). Interestingly, its methylamine derivative, 49, displayed good enzyme inhibitory potency (IC(50) = 1.3 microM) and the most potent SARS antiviral activity (EC(50) = 5.2 microM) in the series. We have carried out computational docking studies and generated a predictive 3D-QSAR model for SARS-CoV PLpro inhibitors.
我们在此描述了一系列针对 SARS-CoV PLpro 的小分子非肽类抑制剂的设计、合成、分子模拟和生物学评价。我们的初始先导化合物是通过高通量筛选多样化的化学文库发现的。随后,我们进行了构效关系研究,并对先导结构进行了优化,得到了对 SARS-CoV 感染的 Vero E6 细胞具有抗病毒活性的有效抑制剂。基于抑制剂 24 与 SARS-CoV PLpro 结合的 X 射线晶体结构,创建了一个药物设计模板。我们的基于结构的修饰导致了更有效的抑制剂 2 的设计(酶 IC50 = 0.46 μM;抗病毒 EC50 = 6 μM)。有趣的是,它的甲胺衍生物 49 在该系列中显示出良好的酶抑制活性(IC50 = 1.3 μM)和最强的 SARS 抗病毒活性(EC50 = 5.2 μM)。我们进行了计算对接研究,并为 SARS-CoV PLpro 抑制剂生成了一个预测的 3D-QSAR 模型。