Barretto Naina, Jukneliene Dalia, Ratia Kiira, Chen Zhongbin, Mesecar Andrew D, Baker Susan C
Department of Microbiology and Immunology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Bldg. 105, Maywood, IL 60153, USA.
J Virol. 2005 Dec;79(24):15189-98. doi: 10.1128/JVI.79.24.15189-15198.2005.
Replication of the genomic RNA of severe acute respiratory syndrome coronavirus (SARS-CoV) is mediated by replicase polyproteins that are processed by two viral proteases, papain-like protease (PLpro) and 3C-like protease (3CLpro). Previously, we showed that SARS-CoV PLpro processes the replicase polyprotein at three conserved cleavage sites. Here, we report the identification and characterization of a 316-amino-acid catalytic core domain of PLpro that can efficiently cleave replicase substrates in trans-cleavage assays and peptide substrates in fluorescent resonance energy transfer-based protease assays. We performed bioinformatics analysis on 16 papain-like protease domains from nine different coronaviruses and identified a putative catalytic triad (Cys1651-His1812-Asp1826) and zinc-binding site. Mutagenesis studies revealed that Asp1826 and the four cysteine residues involved in zinc binding are essential for SARS-CoV PLpro activity. Molecular modeling of SARS-CoV PLpro suggested that this catalytic core may also have deubiquitinating activity. We tested this hypothesis by measuring the deubiquitinating activity of PLpro by two independent assays. SARS CoV-PLpro hydrolyzed both diubiquitin and ubiquitin-7-amino-4-methylcoumarin (AMC) substrates, and hydrolysis of ubiquitin-AMC is approximately 180-fold more efficient than hydrolysis of a peptide substrate that mimics the PLpro replicase recognition sequence. To investigate the critical determinants recognized by PLpro, we performed site-directed mutagenesis on the P6 to P2' residues at each of the three PLpro cleavage sites. We found that PLpro recognizes the consensus cleavage sequence LXGG, which is also the consensus sequence recognized by cellular deubiquitinating enzymes. This similarity in the substrate recognition sites should be considered during the development of SARS-CoV PLpro inhibitors.
严重急性呼吸综合征冠状病毒(SARS-CoV)基因组RNA的复制由复制酶多聚蛋白介导,这些多聚蛋白由两种病毒蛋白酶——木瓜蛋白酶样蛋白酶(PLpro)和3C样蛋白酶(3CLpro)进行加工处理。此前,我们发现SARS-CoV PLpro在三个保守的切割位点对复制酶多聚蛋白进行加工处理。在此,我们报告了PLpro一个316个氨基酸的催化核心结构域的鉴定与特性,该结构域在反式切割试验中能够有效切割复制酶底物,在基于荧光共振能量转移的蛋白酶试验中能够切割肽底物。我们对来自九种不同冠状病毒的16个木瓜蛋白酶样蛋白酶结构域进行了生物信息学分析,鉴定出一个假定的催化三联体(Cys1651-His1812-Asp1826)和锌结合位点。诱变研究表明,Asp1826以及参与锌结合的四个半胱氨酸残基对于SARS-CoV PLpro的活性至关重要。SARS-CoV PLpro的分子建模表明,这个催化核心可能还具有去泛素化活性。我们通过两种独立试验测量PLpro的去泛素化活性来验证这一假设。SARS-CoV PLpro能够水解二聚泛素和泛素-7-氨基-4-甲基香豆素(AMC)底物,并且泛素-AMC的水解效率比模拟PLpro复制酶识别序列的肽底物的水解效率高约180倍。为了研究PLpro识别的关键决定因素,我们对三个PLpro切割位点处的P6至P2'残基进行了定点诱变。我们发现PLpro识别共有切割序列LXGG,这也是细胞去泛素化酶识别的共有序列。在开发SARS-CoV PLpro抑制剂时应考虑底物识别位点的这种相似性。