Yu Menggang, Nan Bin
Department of Medicine, Division of Biostatistics, Indiana University School of Medicine, 410 West 10th Street, Suite 3000, Indianapolis, Indiana 46202, USA.
Biometrics. 2010 Jun;66(2):405-14. doi: 10.1111/j.1541-0420.2009.01295.x. Epub 2009 Jul 23.
In large cohort studies, it often happens that some covariates are expensive to measure and hence only measured on a validation set. On the other hand, relatively cheap but error-prone measurements of the covariates are available for all subjects. Regression calibration (RC) estimation method (Prentice, 1982, Biometrika 69, 331-342) is a popular method for analyzing such data and has been applied to the Cox model by Wang et al. (1997, Biometrics 53, 131-145) under normal measurement error and rare disease assumptions. In this article, we consider the RC estimation method for the semiparametric accelerated failure time model with covariates subject to measurement error. Asymptotic properties of the proposed method are investigated under a two-phase sampling scheme for validation data that are selected via stratified random sampling, resulting in neither independent nor identically distributed observations. We show that the estimates converge to some well-defined parameters. In particular, unbiased estimation is feasible under additive normal measurement error models for normal covariates and under Berkson error models. The proposed method performs well in finite-sample simulation studies. We also apply the proposed method to a depression mortality study.
在大型队列研究中,经常会出现一些协变量测量成本高昂,因此仅在验证集上进行测量的情况。另一方面,所有受试者都可获得相对便宜但容易出错的协变量测量值。回归校准(RC)估计方法(普伦蒂斯,1982年,《生物统计学》69卷,331 - 342页)是分析此类数据的常用方法,并且在正态测量误差和罕见疾病假设下,王等人(1997年,《生物统计学》53卷,131 - 145页)已将其应用于Cox模型。在本文中,我们考虑针对协变量存在测量误差的半参数加速失效时间模型的RC估计方法。在通过分层随机抽样选择验证数据的两阶段抽样方案下,研究了所提出方法的渐近性质,由此产生的观测值既不独立也不同分布。我们表明估计值收敛于一些定义明确的参数。特别地,在正态协变量的加性正态测量误差模型以及伯克森误差模型下,无偏估计是可行的。所提出的方法在有限样本模拟研究中表现良好。我们还将所提出的方法应用于一项抑郁症死亡率研究。