Suppr超能文献

不同分类学和生态学类型的细菌及古菌进行化能自养硫氧化的生物化学与分子生物学

Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea.

作者信息

Ghosh Wriddhiman, Dam Bomba

机构信息

Department of Microbiology, University of Burdwan, West Bengal, India.

出版信息

FEMS Microbiol Rev. 2009 Nov;33(6):999-1043. doi: 10.1111/j.1574-6976.2009.00187.x. Epub 2009 Jun 10.

Abstract

Lithotrophic sulfur oxidation is an ancient metabolic process. Ecologically and taxonomically diverged prokaryotes have differential abilities to utilize different reduced sulfur compounds as lithotrophic substrates. Different phototrophic or chemotrophic species use different enzymes, pathways and mechanisms of electron transport and energy conservation for the oxidation of any given substrate. While the mechanisms of sulfur oxidation in obligately chemolithotrophic bacteria, predominantly belonging to Beta- (e.g. Thiobacillus) and Gammaproteobacteria (e.g. Thiomicrospira), are not well established, the Sox system is the central pathway in the facultative bacteria from Alphaproteobacteria (e.g. Paracoccus). Interestingly, photolithotrophs such as Rhodovulum belonging to Alphaproteobacteria also use the Sox system, whereas those from Chromatiaceae and Chlorobi use a truncated Sox complex alongside reverse-acting sulfate-reducing systems. Certain chemotrophic magnetotactic Alphaproteobacteria allegedly utilize such a combined mechanism. Sulfur-chemolithotrophic metabolism in Archaea, largely restricted to Sulfolobales, is distinct from those in Bacteria. Phylogenetic and biomolecular fossil data suggest that the ubiquity of sox genes could be due to horizontal transfer, and coupled sulfate reduction/sulfide oxidation pathways, originating in planktonic ancestors of Chromatiaceae or Chlorobi, could be ancestral to all sulfur-lithotrophic processes. However, the possibility that chemolithotrophy, originating in deep sea, is the actual ancestral form of sulfur oxidation cannot be ruled out.

摘要

化能无机硫氧化是一种古老的代谢过程。在生态和分类学上分化的原核生物利用不同还原态硫化合物作为化能无机底物的能力存在差异。不同的光合或化能营养物种针对任何给定底物的氧化作用,会使用不同的酶、途径以及电子传递和能量守恒机制。虽然专性化能无机营养细菌(主要属于β-变形菌纲,如硫杆菌属;以及γ-变形菌纲,如硫微螺菌属)中的硫氧化机制尚未完全明确,但Sox系统是来自α-变形菌纲(如副球菌属)的兼性细菌中的核心途径。有趣的是,属于α-变形菌纲的光合无机营养菌,如红环菌属,也使用Sox系统,而来自着色菌科和绿菌科的光合无机营养菌则使用截短的Sox复合体以及反向作用的硫酸盐还原系统。据称某些化能营养趋磁α-变形菌利用这种组合机制。古菌中的硫化能无机营养代谢,主要局限于硫化叶菌目,与细菌中的不同。系统发育和生物分子化石数据表明,sox基因的广泛存在可能归因于水平转移,并且起源于着色菌科或绿菌科浮游祖先的耦合硫酸盐还原/硫化物氧化途径可能是所有硫化能无机营养过程的祖先。然而,源于深海的化能无机营养是硫氧化的实际祖先形式这种可能性也不能排除。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验