Suppr超能文献

泉古菌科通过战胜古菌嗜热菌的竞争,以及细菌嗜中温菌的拥挤,从而在横断山脉硫磺硼砂泉的沸腾泉水中占据主导地位。

Aquificae overcomes competition by archaeal thermophiles, and crowding by bacterial mesophiles, to dominate the boiling vent-water of a Trans-Himalayan sulfur-borax spring.

机构信息

Department of Biological Sciences, Bose Institute, Kolkata, India.

Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.

出版信息

PLoS One. 2024 Oct 25;19(10):e0310595. doi: 10.1371/journal.pone.0310595. eCollection 2024.

Abstract

Trans-Himalayan hot spring waters rich in boron, chlorine, sodium and sulfur (but poor in calcium and silicon) are known based on PCR-amplified 16S rRNA gene sequence data to harbor high diversities of infiltrating bacterial mesophiles. Yet, little is known about the community structure and functions, primary productivity, mutual interactions, and thermal adaptations of the microorganisms present in the steaming waters discharged by these geochemically peculiar spring systems. We revealed these aspects of a bacteria-dominated microbiome (microbial cell density ~8.5 × 104 mL-1; live:dead cell ratio 1.7) thriving in the boiling (85°C) fluid vented by a sulfur-borax spring called Lotus Pond, situated at 4436 m above the mean sea-level, in the Puga valley of eastern Ladakh, on the Changthang plateau. Assembly, annotation, and population-binning of >15-GB metagenomic sequence illuminated the numeral predominance of Aquificae. While members of this phylum accounted for 80% of all 16S rRNA-encoding reads within the metagenomic dataset, 14% of such reads were attributed to Proteobacteria. Post assembly, only 25% of all protein-coding genes identified were attributable to Aquificae, whereas 41% was ascribed to Proteobacteria. Annotation of metagenomic reads encoding 16S rRNAs, and/or PCR-amplified 16S rRNA genes, identified 163 bacterial genera, out of which 66 had been detected in past investigations of Lotus Pond's vent-water via 16S amplicon sequencing. Among these 66, Fervidobacterium, Halomonas, Hydrogenobacter, Paracoccus, Sulfurihydrogenibium, Tepidimonas, Thermus and Thiofaba (or their close phylogenomic relatives) were presently detected as metagenome-assembled genomes (MAGs). Remarkably, the Hydrogenobacter related MAG alone accounted for ~56% of the entire metagenome, even though only 15 out of the 66 genera consistently present in Lotus Pond's vent-water have strains growing in the laboratory at >45°C, reflecting the continued existence of the mesophiles in the ecosystem. Furthermore, the metagenome was replete with genes crucial for thermal adaptation in the context of Lotus Pond's geochemistry and topography. In terms of sequence similarity, a majority of those genes were attributable to phylogenetic relatives of mesophilic bacteria, while functionally they rendered functions such as encoding heat shock proteins, molecular chaperones, and chaperonin complexes; proteins controlling/modulating/inhibiting DNA gyrase; universal stress proteins; methionine sulfoxide reductases; fatty acid desaturases; different toxin-antitoxin systems; enzymes protecting against oxidative damage; proteins conferring flagellar structure/function, chemotaxis, cell adhesion/aggregation, biofilm formation, and quorum sensing. The Lotus Pond Aquificae not only dominated the microbiome numerically but also acted potentially as the main primary producers of the ecosystem, with chemolithotrophic sulfur oxidation (Sox) being the fundamental bioenergetic mechanism, and reductive tricarboxylic acid (rTCA) cycle the predominant carbon fixation pathway. The Lotus Pond metagenome contained several genes directly or indirectly related to virulence functions, biosynthesis of secondary metabolites including antibiotics, antibiotic resistance, and multi-drug efflux pumping. A large proportion of these genes being attributable to Aquificae, and Proteobacteria (very few were ascribed to Archaea), it could be worth exploring in the future whether antibiosis helped the Aquificae overcome niche overlap with other thermophiles (especially those belonging to Archaea), besides exacerbating the bioenergetic costs of thermal endurance for the mesophilic intruders of the ecosystem.

摘要

基于聚合酶链反应(PCR)扩增 16S rRNA 基因序列数据得知,横越喜玛拉雅山脉的温泉水富含硼、氯、钠和硫(但缺乏钙和硅),其中栖息着高度多样化的渗透型中温细菌。然而,我们对于这些在特殊地球化学温泉系统排放的蒸汽水中存在的微生物的群落结构和功能、初级生产力、相互作用、以及热适应机制知之甚少。我们揭示了这些在由细菌主导的微生物组中存在的方面(微生物细胞密度约为 8.5×104 mL-1;活细胞与死细胞的比例为 1.7),该微生物组在海拔 4436 米的普迦谷,莲花池硫磺硼砂温泉的沸腾(85°C)流体中茁壮成长。对超过 15-GB 的宏基因组序列进行组装、注释和种群分类,揭示了泉古菌门的数量优势。虽然该门的成员在宏基因组数据集中的所有 16S rRNA 编码读取中占 80%,但其中 14%归因于变形菌门。组装后,仅鉴定出的所有蛋白质编码基因的 25%可归因于泉古菌门,而 41%归因于变形菌门。对宏基因组编码 16S rRNA 的reads 和/或通过 PCR 扩增的 16S rRNA 基因进行注释,鉴定出 163 个细菌属,其中 66 个已通过过去对莲花池喷口水的 16S 扩增子测序进行了检测。在这 66 个属中,目前检测到 Fervidobacterium、Halomonas、Hydrogenobacter、Paracoccus、Sulfurihydrogenibium、Tepidimonas、Thermus 和 Thiofaba(或其密切的系统发育相关物)作为宏基因组组装基因组(MAGs)。值得注意的是,仅 Hydrogenobacter 相关的 MAG 就占整个宏基因组的~56%,尽管在莲花池喷口水中始终存在的 66 个属中仅有 15 个属的菌株能在实验室中生长在>45°C 的温度下,这反映了中温微生物在该生态系统中的持续存在。此外,宏基因组中还富含与莲花池地球化学和地形相关的热适应至关重要的基因。就序列相似性而言,这些基因中的大多数可归因于中温细菌的系统发育相关物,而从功能上讲,它们提供了热休克蛋白、分子伴侣和伴侣素复合物的编码功能;控制/调节/抑制 DNA 回旋酶的蛋白质;普遍应激蛋白;甲硫氨酸亚砜还原酶;脂肪酸去饱和酶;不同的毒素-抗毒素系统;防止氧化损伤的酶;赋予鞭毛结构/功能、趋化性、细胞粘附/聚集、生物膜形成和群体感应的蛋白质。莲花池泉古菌不仅在数量上主导着微生物组,而且可能是该生态系统的主要初级生产者,化学硫氧化(Sox)是基本的生物能源机制,还原性三羧酸(rTCA)循环是主要的碳固定途径。莲花池宏基因组包含几个直接或间接与毒力功能、包括抗生素在内的次生代谢物生物合成、抗生素耐药性和多药外排泵相关的基因。这些基因中的很大一部分归因于泉古菌门和变形菌门(极少数归因于古菌),未来值得探索的是,抗生素是否有助于泉古菌克服与其他嗜热菌(尤其是那些属于古菌的嗜热菌)的生态位重叠,除了加剧生态系统中中温微生物的热耐力的生物能源成本之外。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7062/11508158/838def3284cb/pone.0310595.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验