Twible Lauren E, Whaley-Martin Kelly, Chen Lin-Xing, Colenbrander Nelson Tara, Arrey James L S, Jarolimek Chad V, King Josh J, Ramilo Lisa, Sonnenberg Helga, Banfield Jillian F, Apte Simon C, Warren Lesley A
Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada.
Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, United States.
Front Microbiol. 2024 Jul 19;15:1426584. doi: 10.3389/fmicb.2024.1426584. eCollection 2024.
Sulfur oxidizing bacteria (SOB) play a key role in sulfur cycling in mine tailings impoundment (TI) waters, where sulfur concentrations are typically high. However, our understanding of SOB sulfur cycling via potential S oxidation pathways (, r, and SI) in these globally ubiquitous contexts, remains limited. Here, we identified TI water column SOB community composition, metagenomics derived metabolic repertoires, physicochemistry, and aqueous sulfur concentration and speciation in four Canadian base metal mine, circumneutral-alkaline TIs over four years (2016 - 2019). Identification and examination of genomes from nine SOB genera occurring in these TI waters revealed two pH partitioned, metabolically distinct groups, which differentially influenced acid generation and sulfur speciation. Complete (c) dominant SOB (e.g., spp., spp.) drove acidity generation and SO consumption via the c pathway at lower pH (pH ~5 to ~6.5). At circumneutral pH conditions (pH ~6.5 to ~8.5), the presence of non-c dominant SOB (hosting the incomplete , r, and/or other S oxidation reactions; e.g. spp., spp.) were associated with higher [SO ] and limited acidity generation. The SI pathway part 1 (; SO to SO ), was not constrained by pH, while S4I pathway part 2 (SO disproportionation via ) was limited to spp. and thus circumneutral pH values. Comparative analysis of low, natural (e.g., hydrothermal vents and sulfur hot springs) and high (e.g., Zn, Cu, Pb/Zn, and Ni tailings) sulfur systems literature data with these TI results, reveals a distinct TI SOB mining microbiome, characterized by elevated abundances of c dominant SOB, likely sustained by continuous replenishment of sulfur species through tailings or mining impacted water additions. Our results indicate that under the primarily oxic conditions in these systems, SO availability plays a key role in determining the dominant sulfur oxidation pathways and associated geochemical and physicochemical outcomes, highlighting the potential for biological management of mining impacted waters via pH and [SO ] manipulation.
硫氧化细菌(SOB)在尾矿库(TI)水体的硫循环中起着关键作用,这些水体中的硫浓度通常较高。然而,在这些全球普遍存在的环境中,我们对SOB通过潜在的硫氧化途径(c、r和SI)进行硫循环的理解仍然有限。在这里,我们在四年(2016 - 2019年)的时间里,确定了加拿大四个贱金属矿山、环境中性至碱性的TI水体中的水柱SOB群落组成、宏基因组学推导的代谢库、物理化学性质以及水体硫浓度和形态。对这些TI水体中出现的9个SOB属的基因组进行鉴定和分析,发现了两个按pH划分、代谢不同的组,它们对酸的产生和硫形态有不同的影响。完整的(c)占主导地位的SOB(例如,硫杆菌属、嗜硫代硫酸盐还原菌属)在较低pH值(pH约5至约6.5)下通过c途径驱动酸度产生和亚硫酸盐消耗。在环境中性pH条件下(pH约6.5至约8.5),非c占主导地位的SOB(进行不完全的c、r和/或其他硫氧化反应;例如,硫微螺菌属、嗜硫小杆菌属)的存在与较高的[亚硫酸盐]和有限的酸度产生有关。SI途径的第1部分(亚硫酸盐到亚硫酸;)不受pH的限制,而S₄I途径的第2部分(通过亚硫酸歧化)仅限于硫微螺菌属,因此限于环境中性pH值。将这些TI结果与低硫、自然(如热液喷口和硫温泉)和高硫(如锌、铜、铅/锌和镍尾矿)系统的文献数据进行比较分析,揭示了一个独特的TI SOB采矿微生物群,其特征是c占主导地位的SOB丰度升高,这可能是通过尾矿或受采矿影响的水的添加持续补充硫物种来维持的。我们的结果表明,在这些系统主要为有氧的条件下,亚硫酸盐的可用性在决定主导的硫氧化途径以及相关的地球化学和物理化学结果方面起着关键作用,突出了通过调节pH值和[亚硫酸盐]对受采矿影响的水体进行生物管理的潜力。