Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.
Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
Biophys J. 2022 Dec 6;121(23):4600-4614. doi: 10.1016/j.bpj.2022.10.031. Epub 2022 Oct 22.
Cell shape change processes, such as proliferation, polarization, migration, and cancer metastasis, rely on a dynamic network of macromolecules. The proper function of this network enables mechanosensation, the ability of cells to sense and respond to mechanical cues. Myosin II and cortexillin I, critical elements of the cellular mechanosensory machinery, preassemble in the cytoplasm of Dictyostelium cells into complexes that we have termed contractility kits (CKs). Two IQGAP proteins then differentially regulate the mechanoresponsiveness of the cortexillin I-myosin II elements within CKs. To investigate the mechanism of CK self-assembly and gain insight into possible molecular means for IQGAP regulation, we developed a coarse-grained excluded volume molecular model in which all protein polymers are represented by nm-sized spheres connected by spring-like links. The model is parameterized using experimentally measured parameters acquired through fluorescence cross-correlation spectroscopy and fluorescence correlation spectroscopy, which describe the interaction affinities and diffusion coefficients for individual molecular components, and which have also been validated via several orthogonal methods. Simulations of wild-type and null-mutant conditions implied that the temporal order of assembly of these kits is dominated by myosin II dimer formation and that IQGAP proteins mediate cluster growth. In addition, our simulations predicted the existence of "ambiguous" CKs that incorporate both classes of IQGAPs, and we confirmed this experimentally using fluorescence cross-correlation spectroscopy. The model serves to describe the formation of the CKs and how their assembly enables and regulates mechanosensation at the molecular level.
细胞形状变化过程,如增殖、极化、迁移和癌症转移,依赖于大分子的动态网络。这个网络的正常功能使细胞能够感知和响应机械线索,实现机械感觉。肌球蛋白 II 和皮质蛋白 I 是细胞机械感觉机制的关键元件,在 Dictyostelium 细胞的细胞质中预先组装成我们称之为收缩套件(CKs)的复合物。然后,两种 IQGAP 蛋白差异调节 CK 中皮质蛋白 I-肌球蛋白 II 元件的机械响应性。为了研究 CK 自组装的机制,并深入了解 IQGAP 调节的可能分子手段,我们开发了一种粗粒排除体积分子模型,其中所有蛋白质聚合物都由 nm 大小的球体代表,通过弹簧状链接连接。该模型使用通过荧光相关光谱和荧光相关光谱获得的实验测量参数进行参数化,这些参数描述了单个分子成分的相互作用亲和力和扩散系数,并且已经通过几种正交方法进行了验证。对野生型和缺失突变条件的模拟表明,这些套件的组装时间顺序主要由肌球蛋白 II 二聚体形成决定,IQGAP 蛋白介导簇生长。此外,我们的模拟预测了存在“模糊”的 CK,它包含两种 IQGAP 蛋白,我们使用荧光相关光谱学实验证实了这一点。该模型用于描述 CK 的形成以及它们的组装如何在分子水平上实现和调节机械感觉。