Suppr超能文献

亲和钳的高度特异性的结构基础,亲和钳是通过定向结构域界面进化产生的合成结合蛋白。

Structural basis for exquisite specificity of affinity clamps, synthetic binding proteins generated through directed domain-interface evolution.

作者信息

Huang Jin, Makabe Koki, Biancalana Matthew, Koide Akiko, Koide Shohei

机构信息

Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA.

出版信息

J Mol Biol. 2009 Oct 9;392(5):1221-31. doi: 10.1016/j.jmb.2009.07.067. Epub 2009 Jul 30.

Abstract

We have established a new protein-engineering strategy termed "directed domain-interface evolution" that generates a binding site by linking two protein domains and then optimizing the interface between them. Using this strategy, we have generated synthetic two-domain "affinity clamps" using PDZ and fibronectin type III (FN3) domains as the building blocks. While these affinity clamps all had significantly higher affinity toward a target peptide than the underlying PDZ domain, two distinct types of affinity clamps were found in terms of target specificity. One type conserved the specificity of the parent PDZ domain, and the other increased the specificity dramatically. Here, we characterized their specificity profiles using peptide phage-display libraries and scanning mutagenesis, which suggested a significantly enlarged recognition site of the high-specificity affinity clamps. The crystal structure of a high-specificity affinity clamp showed extensive contacts with a portion of the peptide ligand that is not recognized by the parent PDZ domain, thus rationalizing the improvement of the specificity of the affinity clamp. A comparison with another affinity clamp structure showed that, although both had extensive contacts between PDZ and FN3 domains, they exhibited a large offset in the relative position of the two domains. Our results indicate that linked domains could rapidly fuse and evolve as a single functional module, and that the inherent plasticity of domain interfaces allows for the generation of diverse active-site topography. These attributes of directed domain-interface evolution provide facile means to generate synthetic proteins with a broad range of functions.

摘要

我们建立了一种新的蛋白质工程策略,称为“定向结构域界面进化”,该策略通过连接两个蛋白质结构域,然后优化它们之间的界面来生成一个结合位点。利用这一策略,我们以PDZ和纤连蛋白III型(FN3)结构域为构建模块,生成了合成双结构域“亲和钳”。虽然这些亲和钳对靶肽的亲和力均显著高于基础PDZ结构域,但在靶标特异性方面发现了两种不同类型的亲和钳。一种类型保留了亲本PDZ结构域的特异性,另一种则显著提高了特异性。在这里,我们使用肽噬菌体展示文库和扫描诱变对它们的特异性谱进行了表征,这表明高特异性亲和钳的识别位点显著扩大。一种高特异性亲和钳的晶体结构显示,它与亲本PDZ结构域未识别的部分肽配体有广泛的接触,从而解释了亲和钳特异性提高的原因。与另一种亲和钳结构的比较表明,尽管两者在PDZ和FN3结构域之间都有广泛的接触,但它们在两个结构域的相对位置上有很大的偏移。我们的结果表明,连接的结构域可以作为一个单一的功能模块快速融合和进化,并且结构域界面的固有可塑性允许产生多样的活性位点拓扑结构。定向结构域界面进化的这些特性为生成具有广泛功能的合成蛋白质提供了简便的方法。

相似文献

2
Design of protein function leaps by directed domain interface evolution.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6578-83. doi: 10.1073/pnas.0801097105. Epub 2008 Apr 29.
3
Directed Evolution of a Highly Specific FN3 Monobody to the SH3 Domain of Human Lyn Tyrosine Kinase.
PLoS One. 2016 Jan 5;11(1):e0145872. doi: 10.1371/journal.pone.0145872. eCollection 2016.
4
Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains.
J Mol Biol. 2010 Sep 17;402(2):460-74. doi: 10.1016/j.jmb.2010.07.032. Epub 2010 Jul 21.
5
Comprehensive Assessment of the Relationship Between Site Specificity and Helix α2 in the Erbin PDZ Domain.
J Mol Biol. 2021 Sep 3;433(18):167115. doi: 10.1016/j.jmb.2021.167115. Epub 2021 Jun 24.
6
Comprehensive analysis of all evolutionary paths between two divergent PDZ domain specificities.
Protein Sci. 2020 Feb;29(2):433-442. doi: 10.1002/pro.3759. Epub 2019 Nov 14.
7
A structural portrait of the PDZ domain family.
J Mol Biol. 2014 Oct 23;426(21):3509-19. doi: 10.1016/j.jmb.2014.08.012. Epub 2014 Aug 23.
8
Generation of high-performance binding proteins for peptide motifs by affinity clamping.
Methods Enzymol. 2013;523:285-302. doi: 10.1016/B978-0-12-394292-0.00013-8.
9
Engineering and analysis of peptide-recognition domain specificities by phage display and deep sequencing.
Methods Enzymol. 2013;523:327-49. doi: 10.1016/B978-0-12-394292-0.00015-1.

引用本文的文献

1
Continuous Fluorescence Assay for In Vitro Translation Compatible with Noncanonical Amino Acids.
ACS Synth Biol. 2024 Jan 19;13(1):119-128. doi: 10.1021/acssynbio.3c00353. Epub 2024 Jan 9.
2
Optophysiology: Illuminating cell physiology with optogenetics.
Physiol Rev. 2022 Jul 1;102(3):1263-1325. doi: 10.1152/physrev.00021.2021. Epub 2022 Jan 24.
3
Small Peptide-Protein Interaction Pair for Genetically Encoded, Fixation Compatible Peptide-PAINT.
Nano Lett. 2021 Nov 24;21(22):9509-9516. doi: 10.1021/acs.nanolett.1c02895. Epub 2021 Nov 10.
5
Bootstrapped Biocatalysis: Biofilm-Derived Materials as Reversibly Functionalizable Multienzyme Surfaces.
ChemCatChem. 2017 Dec 8;9(23):4328-4333. doi: 10.1002/cctc.201701221. Epub 2017 Aug 2.
6
Blueprints for Biosensors: Design, Limitations, and Applications.
Genes (Basel). 2018 Jul 26;9(8):375. doi: 10.3390/genes9080375.
7
Monobodies as possible next-generation protein therapeutics - a perspective.
Swiss Med Wkly. 2017 Nov 20;147:w14545. doi: 10.4414/smw.2017.14545. eCollection 2017.
8
How to Train a Cell-Cutting-Edge Molecular Tools.
Front Chem. 2017 Mar 10;5:12. doi: 10.3389/fchem.2017.00012. eCollection 2017.
9
Monobodies and other synthetic binding proteins for expanding protein science.
Protein Sci. 2017 May;26(5):910-924. doi: 10.1002/pro.3148. Epub 2017 Mar 24.
10
Phage Display Engineered T Cell Receptors as Tools for the Study of Tumor Peptide-MHC Interactions.
Front Oncol. 2015 Jan 12;4:378. doi: 10.3389/fonc.2014.00378. eCollection 2014.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
A dominant conformational role for amino acid diversity in minimalist protein-protein interfaces.
J Mol Biol. 2008 Aug 29;381(2):407-18. doi: 10.1016/j.jmb.2008.06.014. Epub 2008 Jun 12.
3
Design of protein function leaps by directed domain interface evolution.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6578-83. doi: 10.1073/pnas.0801097105. Epub 2008 Apr 29.
4
De novo computational design of retro-aldol enzymes.
Science. 2008 Mar 7;319(5868):1387-91. doi: 10.1126/science.1152692.
6
Phage display for engineering and analyzing protein interaction interfaces.
Curr Opin Struct Biol. 2007 Aug;17(4):481-7. doi: 10.1016/j.sbi.2007.08.007. Epub 2007 Sep 17.
7
A designed ankyrin repeat protein evolved to picomolar affinity to Her2.
J Mol Biol. 2007 Jun 15;369(4):1015-28. doi: 10.1016/j.jmb.2007.03.028. Epub 2007 Mar 20.
8
High-affinity single-domain binding proteins with a binary-code interface.
Proc Natl Acad Sci U S A. 2007 Apr 17;104(16):6632-7. doi: 10.1073/pnas.0700149104. Epub 2007 Apr 9.
9
The generation of new protein functions by the combination of domains.
Structure. 2007 Jan;15(1):85-99. doi: 10.1016/j.str.2006.11.009.
10
Monobodies: antibody mimics based on the scaffold of the fibronectin type III domain.
Methods Mol Biol. 2007;352:95-109. doi: 10.1385/1-59745-187-8:95.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验