Champagnat J, Morin-Surun M P, Fortin G, Thoby-Brisson M
Centre de Recherche de Gif, UPR 2216 (Neurobiologie Génétique et Intégrative), IFR 2118 (Institut de Neurobiologie Alfred Fessard), CNRS, 91198 Gif-sur-Yvette, France.
Philos Trans R Soc Lond B Biol Sci. 2009 Sep 12;364(1529):2469-76. doi: 10.1098/rstb.2009.0090.
The Hox genetic network plays a key role in the anteroposterior patterning of the rhombencephalon at pre- and early-segmental stages of development of the neural tube. In the mouse, it controls development of the entire brainstem respiratory neuronal network, including the pons, the parafacial respiratory group (pFRG) and the pre-Bötzinger complex (preBötC). Inactivation of Krox20/Egr2 eliminates the pFRG activity, thereby causing life-threatening neonatal apnoeas alternating with respiration at low frequency. Another respiratory abnormality, the complete absence of breathing, is induced when neuronal synchronization fails to develop in the preBötC. The present paper summarizes data on a third type of respiratory deficits induced by altering Hox function at pontine levels. Inactivation of Hoxa2, the most rostrally expressed Hox gene in the hindbrain, disturbs embryonic development of the pons and alters neonatal inspiratory shaping without affecting respiratory frequency and apnoeas. The same result is obtained by the Phox2a(+/-) mutation modifying the number of petrosal chemoafferent neurons, by eliminating acetylcholinesterase and by altering Hox-dependent development of the pons with retinoic acid administration at embryonic day 7.5. In addition, embryos treated with retinoic acid provide a mouse model for hyperpnoeic episodic breathing, widely reported in pre-term neonates, young girls with Rett's syndrome, patients with Joubert syndrome and adults with Cheyne-Stokes respiration. We conclude that specific respiratory deficits in vivo are assignable to anteroposterior segments of the brainstem, suggesting that the adult respiratory neuronal network is functionally organized according to the rhombomeric, Hox-dependent segmentation of the brainstem in embryos.
Hox基因网络在神经管发育的前节段和早期节段阶段,对后脑的前后模式形成起着关键作用。在小鼠中,它控制着整个脑干呼吸神经元网络的发育,包括脑桥、面神经旁呼吸组(pFRG)和前包钦格复合体(preBötC)。Krox20/Egr2的失活消除了pFRG的活性,从而导致危及生命的新生儿呼吸暂停,并伴有低频呼吸。当preBötC中神经元同步未能发育时,会引发另一种呼吸异常,即完全没有呼吸。本文总结了关于在脑桥水平改变Hox功能所诱导的第三种呼吸缺陷类型的数据。Hoxa2是后脑最靠前表达的Hox基因,其失活会扰乱脑桥的胚胎发育,并改变新生儿吸气模式,但不影响呼吸频率和呼吸暂停。通过Phox2a(+/-)突变改变岩神经节化学传入神经元的数量、消除乙酰胆碱酯酶以及在胚胎第7.5天给予视黄酸改变脑桥的Hox依赖性发育,也能得到相同的结果。此外,用视黄酸处理的胚胎提供了一种呼吸急促发作性呼吸的小鼠模型,这种情况在早产儿、患有雷特综合征的年轻女孩、患有乔伯综合征的患者以及患有潮式呼吸的成年人中广泛报道。我们得出结论,体内特定的呼吸缺陷可归因于脑干的前后节段,这表明成体呼吸神经元网络在功能上是根据胚胎中脑干的菱形节段、Hox依赖性节段化来组织的。