Suppr超能文献

母亲效应程序:一种用于简便复制性酵母细胞寿命分析的遗传系统。

The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae.

机构信息

Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.

出版信息

Genetics. 2009 Oct;183(2):413-22, 1SI-13SI. doi: 10.1534/genetics.109.106229. Epub 2009 Aug 3.

Abstract

The replicative life span (RLS) of Saccharomyces cerevisiae has been established as a model for the genetic regulation of longevity despite the inherent difficulty of the RLS assay, which requires separation of mother and daughter cells by micromanipulation after every division. Here we present the mother enrichment program (MEP), an inducible genetic system in which mother cells maintain a normal RLS--a median of 36 generations in the diploid MEP strain--while the proliferative potential of daughter cells is eliminated. Thus, the viability of a population over time becomes a function of RLS, and it displays features of a survival curve such as changes in hazard rate with age. We show that viability of mother cells in liquid culture is regulated by SIR2 and FOB1, two opposing regulators of RLS in yeast. We demonstrate that viability curves of these short- and long-lived strains can be easily distinguished from wild type, using a colony formation assay. This provides a simplified screening method for identifying genetic or environmental factors that regulate RLS. Additionally, the MEP can provide a cohort of cells at any stage of their life span for the analysis of age-associated phenotypes. These capabilities effectively remove the hurdles presented by RLS analysis that have hindered S. cerevisiae aging studies since their inception 50 years ago.

摘要

酿酒酵母的复制寿命 (RLS) 已被确立为遗传调控长寿的模型,尽管 RLS 测定存在固有困难,需要在每次分裂后通过微操作分离母细胞和子细胞。在这里,我们介绍了母细胞富集程序 (MEP),这是一种可诱导的遗传系统,其中母细胞保持正常的 RLS-在二倍体 MEP 菌株中为 36 代的中位数-,而子细胞的增殖潜力被消除。因此,种群随时间的存活能力成为 RLS 的函数,并且显示出存活曲线的特征,例如随着年龄的变化危险率的变化。我们表明,液体培养中的母细胞的存活能力受到 SIR2 和 FOB1 的调节,这是酵母中 RLS 的两个相反调节剂。我们证明,使用菌落形成测定法,可以很容易地将这些短寿命和长寿命菌株的存活曲线与野生型区分开来。这提供了一种简化的筛选方法,用于鉴定调节 RLS 的遗传或环境因素。此外,MEP 可以为任何寿命阶段的细胞提供队列,用于分析与年龄相关的表型。这些功能有效地消除了自 50 年前 S. cerevisiae 衰老研究开始以来,RLS 分析所带来的障碍。

相似文献

1
The mother enrichment program: a genetic system for facile replicative life span analysis in Saccharomyces cerevisiae.
Genetics. 2009 Oct;183(2):413-22, 1SI-13SI. doi: 10.1534/genetics.109.106229. Epub 2009 Aug 3.
2
Sir2 deletion prevents lifespan extension in 32 long-lived mutants.
Aging Cell. 2011 Dec;10(6):1089-91. doi: 10.1111/j.1474-9726.2011.00742.x. Epub 2011 Oct 3.
3
Sir2-independent life span extension by calorie restriction in yeast.
PLoS Biol. 2004 Sep;2(9):E296. doi: 10.1371/journal.pbio.0020296. Epub 2004 Aug 24.
4
Cell biology. Twists in the tale of the aging yeast.
Science. 2005 Nov 18;310(5751):1124-5. doi: 10.1126/science.1121310.
5
Life-span extension in yeast.
Science. 2006 Apr 14;312(5771):195-7; author reply 195-7. doi: 10.1126/science.312.5771.195d.
6
HST1 increases replicative lifespan of a sir2Δ mutant in the absence of PDE2 in Saccharomyces cerevisiae.
J Microbiol. 2017 Feb;55(2):123-129. doi: 10.1007/s12275-017-6535-z. Epub 2017 Jan 26.
7
Elevated proteasome capacity extends replicative lifespan in Saccharomyces cerevisiae.
PLoS Genet. 2011 Sep;7(9):e1002253. doi: 10.1371/journal.pgen.1002253. Epub 2011 Sep 8.
8
Simulated microgravity accelerates aging in Saccharomyces cerevisiae.
Life Sci Space Res (Amst). 2021 Feb;28:32-40. doi: 10.1016/j.lssr.2020.12.003. Epub 2020 Dec 31.
10
Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of .
Genetics. 2019 May;212(1):75-91. doi: 10.1534/genetics.119.302047. Epub 2019 Mar 6.

引用本文的文献

1
Iterative SCRaMbLE for engineering synthetic genome modules and chromosomes.
Nat Commun. 2025 Aug 7;16(1):7278. doi: 10.1038/s41467-025-62356-y.
3
Genome dilution by cell growth drives starvation-like proteome remodeling in mammalian and yeast cells.
Nat Struct Mol Biol. 2024 Dec;31(12):1859-1871. doi: 10.1038/s41594-024-01353-z. Epub 2024 Jul 24.
4
Elimination of virus-like particles reduces protein aggregation and extends replicative lifespan in .
Proc Natl Acad Sci U S A. 2024 Apr 2;121(14):e2313538121. doi: 10.1073/pnas.2313538121. Epub 2024 Mar 25.
5
Understanding the Impact of Industrial Stress Conditions on Replicative Aging in .
Front Fungal Biol. 2021 Jun 2;2:665490. doi: 10.3389/ffunb.2021.665490. eCollection 2021.
6
Senescence in yeast is associated with amplified linear fragments of chromosome XII rather than ribosomal DNA circle accumulation.
PLoS Biol. 2023 Aug 29;21(8):e3002250. doi: 10.1371/journal.pbio.3002250. eCollection 2023 Aug.
7
Dietary change without caloric restriction maintains a youthful profile in ageing yeast.
PLoS Biol. 2023 Aug 29;21(8):e3002245. doi: 10.1371/journal.pbio.3002245. eCollection 2023 Aug.
8
Investigating the biology of yeast aging by single-cell RNA-seq.
Aging (Albany NY). 2023 Aug 14;15(15):7340-7342. doi: 10.18632/aging.204991.
10
Chaperone-Dependent Degradation of Cdc42 Promotes Cell Polarity and Shields the Protein from Aggregation.
Mol Cell Biol. 2023;43(5):200-222. doi: 10.1080/10985549.2023.2198171. Epub 2023 Apr 28.

本文引用的文献

1
Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis.
Bioinformatics. 2009 Jun 15;25(12):1564-5. doi: 10.1093/bioinformatics/btp253. Epub 2009 Apr 15.
2
Replicative aging in yeast: the means to the end.
Annu Rev Cell Dev Biol. 2008;24:29-54. doi: 10.1146/annurev.cellbio.23.090506.123509.
3
Quantitative evidence for conserved longevity pathways between divergent eukaryotic species.
Genome Res. 2008 Apr;18(4):564-70. doi: 10.1101/gr.074724.107. Epub 2008 Mar 13.
4
A method for high-throughput quantitative analysis of yeast chronological life span.
J Gerontol A Biol Sci Med Sci. 2008 Feb;63(2):113-21. doi: 10.1093/gerona/63.2.113.
5
Identifying genes that extend life span using a high-throughput screening system.
Methods Mol Biol. 2007;371:237-48. doi: 10.1007/978-1-59745-361-5_18.
6
Extension of chronological life span in yeast by decreased TOR pathway signaling.
Genes Dev. 2006 Jan 15;20(2):174-84. doi: 10.1101/gad.1381406.
7
Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients.
Science. 2005 Nov 18;310(5751):1193-6. doi: 10.1126/science.1115535.
8
Understanding the odd science of aging.
Cell. 2005 Feb 25;120(4):437-47. doi: 10.1016/j.cell.2005.01.027.
9
Genes determining yeast replicative life span in a long-lived genetic background.
Mech Ageing Dev. 2005 Apr;126(4):491-504. doi: 10.1016/j.mad.2004.10.007. Epub 2005 Jan 7.
10
Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast.
Genetics. 2005 Apr;169(4):1915-25. doi: 10.1534/genetics.104.036871. Epub 2005 Feb 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验