Elliott Marc N, McCaffrey Daniel F, Finch Brian K, Klein David J, Orr Nate, Beckett Megan K, Lurie Nicole
RAND Corporation, Santa Monica, CA 90407-2138, USA.
Health Serv Res. 2009 Oct;44(5 Pt 1):1622-39. doi: 10.1111/j.1475-6773.2009.01000.x. Epub 2009 Jul 27.
Single-year estimates of health disparities in small racial/ethnic groups are often insufficiently precise to guide policy, whereas estimates that are pooled over multiple years may not accurately describe current conditions. While collecting additional data is costly, innovative analytic approaches may improve the accuracy and utility of existing data. We developed an application of the Kalman filter in order to make more efficient use of extant data.
We used 1997-2004 National Health Interview Survey data on the prevalence of health outcomes for two racial/ethnic subgroups: American Indians/Alaska Natives and Chinese Americans.
We modified the Kalman filter to generate more accurate current-year prevalence estimates for small racial/ethnic groups by efficiently aggregating past years of cross-sectional survey data within racial/ethnic groups. We compared these new estimates and their accuracy to simple current-year prevalence estimates.
For 18 of 19 outcomes, the modified Kalman filter approach reduced the error of current-year estimates for each of the two groups by 20-35 percent-equivalent to increasing current-year sample sizes for these groups by 56-135 percent.
This approach could increase the accuracy of health measures for small groups using extant data, with virtually no additional cost other than those related to analytical processes.
对少数种族/族裔群体健康差异的单年估计往往不够精确,无法为政策提供指导,而多年汇总的估计可能无法准确描述当前状况。虽然收集更多数据成本高昂,但创新的分析方法可能会提高现有数据的准确性和实用性。我们开发了一种卡尔曼滤波器应用程序,以便更有效地利用现有数据。
我们使用了1997 - 2004年国家健康访谈调查数据,这些数据涉及两个种族/族裔亚组的健康结果患病率:美国印第安人/阿拉斯加原住民和华裔美国人。
我们对卡尔曼滤波器进行了修改,通过有效汇总种族/族裔群体过去几年的横断面调查数据,为少数种族/族裔群体生成更准确的当年患病率估计值。我们将这些新估计值及其准确性与简单的当年患病率估计值进行了比较。
对于19项结果中的18项,改进后的卡尔曼滤波器方法将两组中每组当年估计值的误差降低了20% - 35%,这相当于将这些组的当年样本量增加了56% - 135%。
这种方法可以提高利用现有数据对少数群体健康指标的测量准确性,除了与分析过程相关的成本外,几乎没有额外成本。