Suppr超能文献

一种新型遗传开关控制艰难梭菌细胞壁蛋白 CwpV 的相变异表达。

A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein.

机构信息

Division of Cell and Molecular Biology, Imperial College London, London SW7 2AZ, UK.

出版信息

Mol Microbiol. 2009 Nov;74(3):541-56. doi: 10.1111/j.1365-2958.2009.06812.x. Epub 2009 Jul 28.

Abstract

Clostridium difficile is a nosocomial pathogen that can cause severe gastrointestinal infections. C. difficile encodes a family of cell wall proteins, some of which are implicated in pathogenesis. Here we have characterized CwpV, the largest member of this family. CwpV is surface expressed and post-translationally processed in a manner analogous to the major S-layer protein SlpA. Expression of cwpV is phase variable, with approximately 5% of cells in a population expressing the protein under standard laboratory growth conditions. Upstream of cwpV, inverted repeats flank a 195 bp sequence which undergoes DNA inversion. Use of a gusA transcriptional reporter demonstrated that phase variation is mediated by DNA inversion; in one orientation cwpV is expressed while in the opposite orientation the gene is silent. The inversion region contains neither the promoter nor any of the open reading frame, therefore this system differs from previously described phase variation mechanisms. The cwpV promoter is located upstream of the inversion region and we propose a model of phase variation based on intrinsic terminator formation in the OFF transcript. A C. difficile site-specific recombinase able to catalyse the inversion has been identified.

摘要

艰难梭菌是一种医院病原体,可引起严重的胃肠道感染。艰难梭菌编码一组细胞壁蛋白,其中一些与发病机制有关。在这里,我们对 CwpV 进行了表征,CwpV 是该家族中最大的成员。CwpV 表面表达,并以类似于主要 S 层蛋白 SlpA 的方式进行翻译后加工。CwpV 的表达具有阶段性变化,在标准实验室生长条件下,约有 5%的细胞表达该蛋白。在 cwpV 的上游,反向重复序列侧翼有一个 195bp 的序列,该序列发生 DNA 反转。使用 gusA 转录报告基因证明,相位变化是由 DNA 反转介导的;在一个方向上表达 cwpV,而在相反的方向上,该基因是沉默的。反转区域既不含启动子,也不含任何开放阅读框,因此该系统与先前描述的相位变化机制不同。cwpV 启动子位于反转区域的上游,我们提出了一种基于 OFF 转录物中内在终止子形成的相位变化模型。已经鉴定出能够催化反转的艰难梭菌位点特异性重组酶。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/83fc/2784873/5e6e2db9053a/mmi0074-0541-f2.jpg

相似文献

1
A novel genetic switch controls phase variable expression of CwpV, a Clostridium difficile cell wall protein.
Mol Microbiol. 2009 Nov;74(3):541-56. doi: 10.1111/j.1365-2958.2009.06812.x. Epub 2009 Jul 28.
3
Clostridium difficile cell wall protein CwpV undergoes enzyme-independent intramolecular autoproteolysis.
J Biol Chem. 2012 Jan 6;287(2):1538-44. doi: 10.1074/jbc.M111.302463. Epub 2011 Nov 28.
4
The Clostridium difficile cell wall protein CwpV confers phase-variable phage resistance.
Mol Microbiol. 2015 Oct;98(2):329-42. doi: 10.1111/mmi.13121. Epub 2015 Aug 8.
5
A genetic switch controls the production of flagella and toxins in Clostridium difficile.
PLoS Genet. 2017 Mar 27;13(3):e1006701. doi: 10.1371/journal.pgen.1006701. eCollection 2017 Mar.
7
9
In vivo phase variation of MR/P fimbrial gene expression in Proteus mirabilis infecting the urinary tract.
Mol Microbiol. 1997 Mar;23(5):1009-19. doi: 10.1046/j.1365-2958.1997.2791645.x.
10
Global transcriptional response of Clostridium difficile carrying the CD38 prophage.
Appl Environ Microbiol. 2015 Feb;81(4):1364-74. doi: 10.1128/AEM.03656-14.

引用本文的文献

1
Phase variation of colony morphology occurs via modulation of cell division.
bioRxiv. 2025 Aug 20:2025.08.20.671228. doi: 10.1101/2025.08.20.671228.
2
Flagellar switch inverted repeats impact heterogeneity in flagellar gene expression and thus C. difficile RT027/MLST1 virulence.
Cell Rep. 2025 Jun 24;44(6):115830. doi: 10.1016/j.celrep.2025.115830. Epub 2025 Jun 11.
3
Flagellar switch inverted repeat impacts flagellar invertibility and varies RT027/MLST1 virulence.
bioRxiv. 2024 Sep 24:2023.06.22.546185. doi: 10.1101/2023.06.22.546185.
4
The RgaS-RgaR two-component system promotes Clostridioides difficile sporulation through a small RNA and the Agr1 system.
PLoS Genet. 2023 Oct 16;19(10):e1010841. doi: 10.1371/journal.pgen.1010841. eCollection 2023 Oct.
5
The RgaS-RgaR two-component system promotes sporulation through a small RNA and the Agr1 system.
bioRxiv. 2023 Jun 27:2023.06.26.546640. doi: 10.1101/2023.06.26.546640.
6
A network of small RNAs regulates sporulation initiation in Clostridioides difficile.
EMBO J. 2023 Jun 15;42(12):e112858. doi: 10.15252/embj.2022112858. Epub 2023 May 4.
7
infection: traversing host-pathogen interactions in the gut.
Microbiology (Reading). 2023 Feb;169(2). doi: 10.1099/mic.0.001306.
9
Pathogenicity and virulence of .
Virulence. 2023 Dec;14(1):2150452. doi: 10.1080/21505594.2022.2150452.
10
Identification of a Bile Acid-Binding Transcription Factor in Using Chemical Proteomics.
ACS Chem Biol. 2022 Nov 18;17(11):3086-3099. doi: 10.1021/acschembio.2c00463. Epub 2022 Oct 24.

本文引用的文献

1
Structural insights into the molecular organization of the S-layer from Clostridium difficile.
Mol Microbiol. 2009 Mar;71(5):1308-22. doi: 10.1111/j.1365-2958.2009.06603.x. Epub 2009 Jan 29.
3
Immunoreactive cell wall proteins of Clostridium difficile identified by human sera.
J Med Microbiol. 2008 Jun;57(Pt 6):750-756. doi: 10.1099/jmm.0.47532-0.
4
Regulation of surface architecture by symbiotic bacteria mediates host colonization.
Proc Natl Acad Sci U S A. 2008 Mar 11;105(10):3951-6. doi: 10.1073/pnas.0709266105. Epub 2008 Mar 4.
5
Prospective study of Clostridium difficile infections in Europe with phenotypic and genotypic characterisation of the isolates.
Clin Microbiol Infect. 2007 Nov;13(11):1048-57. doi: 10.1111/j.1469-0691.2007.01824.x. Epub 2007 Sep 11.
7
The ClosTron: a universal gene knock-out system for the genus Clostridium.
J Microbiol Methods. 2007 Sep;70(3):452-64. doi: 10.1016/j.mimet.2007.05.021. Epub 2007 Jun 18.
9
Phase-variable expression of a family of glycoproteins imparts a dynamic surface to a symbiont in its human intestinal ecosystem.
Proc Natl Acad Sci U S A. 2007 Feb 13;104(7):2413-8. doi: 10.1073/pnas.0608797104. Epub 2007 Feb 6.
10
Narrative review: the new epidemic of Clostridium difficile-associated enteric disease.
Ann Intern Med. 2006 Nov 21;145(10):758-64. doi: 10.7326/0003-4819-145-10-200611210-00008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验