Dublenych Yu I
Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, 1 Svientsitskii Street, 79011 Lviv, Ukraine.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Jul;80(1 Pt 1):011123. doi: 10.1103/PhysRevE.80.011123. Epub 2009 Jul 17.
We propose a method for determining the ground states of lattice-gas (or Ising) models. The method makes possible to find all types of ground states, including chaotic and ordered-but-aperiodic ones, and to identify the first-order phase transitions between them. Using this method, we prove the existence of an infinite series of ground states (the so-called "devil's step") in the lattice-gas model on the triangular lattice with up to third nearest-neighbor interactions and we study the effect of the interactions up to 19th neighbors on this series. To our best knowledge, this is only the second example of the devil's step at zero temperature in the lattice-gas models with one kind of particles.
我们提出了一种确定晶格气体(或伊辛)模型基态的方法。该方法使得找到所有类型的基态成为可能,包括混沌的和有序但非周期性的基态,并识别它们之间的一级相变。使用这种方法,我们证明了在具有至多第三近邻相互作用的三角形晶格上的晶格气体模型中存在无限系列的基态(所谓的“魔鬼阶梯”),并且我们研究了直至第19个近邻的相互作用对该系列的影响。据我们所知,这是具有一种粒子的晶格气体模型中零温度下魔鬼阶梯的第二个例子。