Kiranyaz Serkan, Ince Turker, Yildirim Alper, Gabbouj Moncef
Department of Signal Processing, Tampere University of Technology, 33101 Tampere,
IEEE Trans Syst Man Cybern B Cybern. 2010 Apr;40(2):298-319. doi: 10.1109/TSMCB.2009.2015054. Epub 2009 Aug 4.
In this paper, we propose two novel techniques, which successfully address several major problems in the field of particle swarm optimization (PSO) and promise a significant breakthrough over complex multimodal optimization problems at high dimensions. The first one, which is the so-called multidimensional (MD) PSO, re-forms the native structure of swarm particles in such a way that they can make interdimensional passes with a dedicated dimensional PSO process. Therefore, in an MD search space, where the optimum dimension is unknown, swarm particles can seek both positional and dimensional optima. This eventually removes the necessity of setting a fixed dimension a priori, which is a common drawback for the family of swarm optimizers. Nevertheless, MD PSO is still susceptible to premature convergences due to lack of divergence. Among many PSO variants in the literature, none yields a robust solution, particularly over multimodal complex problems at high dimensions. To address this problem, we propose the fractional global best formation (FGBF) technique, which basically collects all the best dimensional components and fractionally creates an artificial global best (aGB) particle that has the potential to be a better "guide" than the PSO's native gbest particle. This way, the potential diversity that is present among the dimensions of swarm particles can be efficiently used within the aGB particle. We investigated both individual and mutual applications of the proposed techniques over the following two well-known domains: 1) nonlinear function minimization and 2) data clustering. An extensive set of experiments shows that in both application domains, MD PSO with FGBF exhibits an impressive speed gain and converges to the global optima at the true dimension regardless of the search space dimension, swarm size, and the complexity of the problem.
在本文中,我们提出了两种新颖的技术,它们成功地解决了粒子群优化(PSO)领域中的几个主要问题,并有望在高维复杂多模态优化问题上取得重大突破。第一种技术是所谓的多维(MD)PSO,它以一种能使粒子通过专门的维度PSO过程进行跨维度传递的方式重新构建了群体粒子的原生结构。因此,在最优维度未知的MD搜索空间中,群体粒子可以同时寻找位置最优和维度最优。这最终消除了事先设定固定维度的必要性,而这是群体优化器家族的一个常见缺点。然而,由于缺乏发散性,MD PSO仍然容易过早收敛。在文献中的许多PSO变体中,没有一种能给出鲁棒的解决方案,特别是在高维多模态复杂问题上。为了解决这个问题,我们提出了分数全局最优形成(FGBF)技术,该技术基本上收集所有最佳维度分量,并分数地创建一个人工全局最优(aGB)粒子,它有可能成为比PSO原生的全局最优粒子更好的“引导”。通过这种方式,群体粒子维度间存在的潜在多样性可以在aGB粒子中得到有效利用。我们在以下两个著名领域研究了所提出技术的单独应用和相互应用:1)非线性函数最小化和2)数据聚类。大量实验表明,在这两个应用领域中,带有FGBF的MD PSO都展现出了令人印象深刻的速度提升,并且无论搜索空间维度、群体规模和问题的复杂性如何,都能在真实维度收敛到全局最优解。