Suppr超能文献

自适应粒子群优化算法

Adaptive particle swarm optimization.

作者信息

Zhan Zhi-Hui, Zhang Jun, Li Yun, Chung Henry Shu-Hung

机构信息

Department of Computer Science, SunYat-Sen University, Guangzhou, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2009 Dec;39(6):1362-81. doi: 10.1109/TSMCB.2009.2015956. Epub 2009 Apr 7.

Abstract

An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity.

摘要

提出了一种自适应粒子群优化算法(APSO),其搜索效率优于经典粒子群优化算法(PSO)。更重要的是,它能够以更快的收敛速度在整个搜索空间内进行全局搜索。APSO包括两个主要步骤。首先,通过评估种群分布和粒子适应度,执行实时进化状态估计过程,以识别以下四种定义的进化状态之一,包括在每一代中的探索、利用、收敛和跳出。它能够在运行时自动控制惯性权重、加速系数和其他算法参数,以提高搜索效率和收敛速度。然后,当进化状态被分类为收敛状态时,执行精英学习策略。该策略将作用于全局最优粒子,以跳出可能的局部最优。APSO已在12个单峰和多峰基准函数上进行了全面评估。将研究参数自适应和精英学习的效果。结果表明,APSO在收敛速度、全局最优性、解的准确性和算法可靠性方面显著提高了PSO范式的性能。由于APSO仅向PSO范式引入了两个新参数,因此不会引入额外的设计或实现复杂性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验