Suppr超能文献

基于机器人技术的人体运动合成

Robotics-based synthesis of human motion.

作者信息

Khatib O, Demircan E, De Sapio V, Sentis L, Besier T, Delp S

机构信息

Artificial Intelligence Laboratory, Stanford University, Stanford, CA 94305, USA.

出版信息

J Physiol Paris. 2009 Sep-Dec;103(3-5):211-9. doi: 10.1016/j.jphysparis.2009.08.004. Epub 2009 Aug 7.

Abstract

The synthesis of human motion is a complex procedure that involves accurate reconstruction of movement sequences, modeling of musculoskeletal kinematics, dynamics and actuation, and characterization of reliable performance criteria. Many of these processes have much in common with the problems found in robotics research. Task-based methods used in robotics may be leveraged to provide novel musculoskeletal modeling methods and physiologically accurate performance predictions. In this paper, we present (i) a new method for the real-time reconstruction of human motion trajectories using direct marker tracking, (ii) a task-driven muscular effort minimization criterion and (iii) new human performance metrics for dynamic characterization of athletic skills. Dynamic motion reconstruction is achieved through the control of a simulated human model to follow the captured marker trajectories in real-time. The operational space control and real-time simulation provide human dynamics at any configuration of the performance. A new criteria of muscular effort minimization has been introduced to analyze human static postures. Extensive motion capture experiments were conducted to validate the new minimization criterion. Finally, new human performance metrics were introduced to study in details an athletic skill. These metrics include the effort expenditure and the feasible set of operational space accelerations during the performance of the skill. The dynamic characterization takes into account skeletal kinematics as well as muscle routing kinematics and force generating capacities. The developments draw upon an advanced musculoskeletal modeling platform and a task-oriented framework for the effective integration of biomechanics and robotics methods.

摘要

人体运动合成是一个复杂的过程,涉及运动序列的精确重建、肌肉骨骼运动学、动力学和驱动建模,以及可靠性能标准的表征。这些过程中的许多与机器人研究中发现的问题有很多共同之处。机器人技术中使用的基于任务的方法可用于提供新颖的肌肉骨骼建模方法和生理上准确的性能预测。在本文中,我们提出了:(i)一种使用直接标记跟踪实时重建人体运动轨迹的新方法;(ii)一种任务驱动的肌肉努力最小化标准;以及(iii)用于动态表征运动技能的新人体性能指标。动态运动重建是通过控制模拟人体模型实时跟踪捕获的标记轨迹来实现的。操作空间控制和实时模拟可在性能的任何配置下提供人体动力学。引入了一种新的肌肉努力最小化标准来分析人体静态姿势。进行了广泛的运动捕捉实验以验证新的最小化标准。最后,引入了新的人体性能指标来详细研究一项运动技能。这些指标包括技能执行过程中的努力消耗和操作空间加速度的可行集。动态表征考虑了骨骼运动学以及肌肉路径运动学和力产生能力。这些进展借鉴了先进的肌肉骨骼建模平台和面向任务的框架,以有效整合生物力学和机器人技术方法。

相似文献

1
Robotics-based synthesis of human motion.
J Physiol Paris. 2009 Sep-Dec;103(3-5):211-9. doi: 10.1016/j.jphysparis.2009.08.004. Epub 2009 Aug 7.
2
Modeling and evaluation of human motor skills in a virtual tennis task.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4190-3. doi: 10.1109/IEMBS.2008.4650133.
3
Simulation of Constrained Musculoskeletal Systems in Task Space.
IEEE Trans Biomed Eng. 2018 Feb;65(2):307-318. doi: 10.1109/TBME.2017.2764630. Epub 2017 Oct 19.
4
5
An optimal control strategy for two-dimensional motion camouflage with non-holonimic constraints.
Biol Cybern. 2012 Jul;106(4-5):261-70. doi: 10.1007/s00422-012-0493-7. Epub 2012 May 31.
6
Biomechanical modeling and optimal control of human posture.
J Biomech. 2003 Nov;36(11):1701-12. doi: 10.1016/s0021-9290(03)00170-2.
7
Contribution of non-extensor muscles of the leg to maximal-effort countermovement jumping.
Biomed Eng Online. 2005 Sep 6;4:52. doi: 10.1186/1475-925X-4-52.
8
Characterization of motor skill based on musculoskeletal model.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:6542-5. doi: 10.1109/IEMBS.2009.5334508.
9
An approximate stochastic optimal control framework to simulate nonlinear neuro-musculoskeletal models in the presence of noise.
PLoS Comput Biol. 2022 Jun 8;18(6):e1009338. doi: 10.1371/journal.pcbi.1009338. eCollection 2022 Jun.

引用本文的文献

1
Study on the Applicability of Digital Twins for Home Remote Motor Rehabilitation.
Sensors (Basel). 2023 Jan 12;23(2):911. doi: 10.3390/s23020911.
2
Cartesian Control of Sit-to-Stand Motion Using Head Position Feedback.
Appl Bionics Biomech. 2020 Aug 20;2020:1979342. doi: 10.1155/2020/1979342. eCollection 2020.
3
Modeling musculoskeletal kinematic and dynamic redundancy using null space projection.
PLoS One. 2019 Jan 2;14(1):e0209171. doi: 10.1371/journal.pone.0209171. eCollection 2019.
4
A survey of human shoulder functional kinematic representations.
Med Biol Eng Comput. 2019 Feb;57(2):339-367. doi: 10.1007/s11517-018-1903-3. Epub 2018 Oct 26.
5
An Extended Passive Motion Paradigm for Human-Like Posture and Movement Planning in Redundant Manipulators.
Front Neurorobot. 2017 Nov 30;11:65. doi: 10.3389/fnbot.2017.00065. eCollection 2017.
6
A Donders' Like Law for Arm Movements: The Signal not the Noise.
Front Hum Neurosci. 2016 Mar 30;10:136. doi: 10.3389/fnhum.2016.00136. eCollection 2016.
7
Uncontrolled manifold analysis of arm joint angle variability during robotic teleoperation and freehand movement of surgeons and novices.
IEEE Trans Biomed Eng. 2014 Dec;61(12):2869-81. doi: 10.1109/TBME.2014.2332359. Epub 2014 Jun 23.
8
Task-level strategies for human sagittal-plane running maneuvers are consistent with robotic control policies.
PLoS One. 2012;7(12):e51888. doi: 10.1371/journal.pone.0051888. Epub 2012 Dec 20.
9
Computational Development of Jacobian Matrices for Complex Spatial Manipulators.
Adv Eng Softw. 2012 May;47(1):160-163. doi: 10.1016/j.advengsoft.2012.01.002.

本文引用的文献

1
OpenSim: open-source software to create and analyze dynamic simulations of movement.
IEEE Trans Biomed Eng. 2007 Nov;54(11):1940-50. doi: 10.1109/TBME.2007.901024.
2
Determining natural arm configuration along a reaching trajectory.
Exp Brain Res. 2005 Dec;167(3):352-61. doi: 10.1007/s00221-005-0039-5. Epub 2005 Oct 20.
3
4
Posture-based or trajectory-based movement planning: a comparison of direct and indirect pointing movements.
Exp Brain Res. 2004 Dec;159(3):340-8. doi: 10.1007/s00221-004-1959-1. Epub 2004 Jul 28.
5
Generating dynamic simulations of movement using computed muscle control.
J Biomech. 2003 Mar;36(3):321-8. doi: 10.1016/s0021-9290(02)00432-3.
6
Planning movements in a simple redundant task.
Curr Biol. 2002 Mar 19;12(6):488-91. doi: 10.1016/s0960-9822(02)00715-7.
7
A graphics-based software system to develop and analyze models of musculoskeletal structures.
Comput Biol Med. 1995 Jan;25(1):21-34. doi: 10.1016/0010-4825(95)98882-e.
8
Coordination of arm and wrist motion during a reaching task.
J Neurosci. 1982 Apr;2(4):399-408. doi: 10.1523/JNEUROSCI.02-04-00399.1982.
9
An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures.
IEEE Trans Biomed Eng. 1990 Aug;37(8):757-67. doi: 10.1109/10.102791.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验