Kielec Joseph M, Valentine Kathleen G, Wand A Joshua
Johnson Research Foundation and Department of Biochemistry & Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania, USA 19104-6059.
Biochim Biophys Acta. 2010 Feb;1798(2):150-60. doi: 10.1016/j.bbamem.2009.07.027. Epub 2009 Aug 8.
The structural study of membrane proteins perhaps represents one of the greatest challenges of the post-genomic era. While membrane proteins comprise over 50% of current and potential drug targets, their structural characterization lags far behind that of soluble proteins. Nuclear magnetic resonance (NMR) offers great potential not only with respect to structural characterization of integral membrane proteins but may also provide the ability to study the details of small ligand interactions. However, the size limitations of solution NMR have restricted comprehensive structural characterization of membrane protein NMR structures to the relatively small beta-barrel proteins or helical proteins of relatively simple topology. In an effort to escape the barriers presented by slow molecular reorientation of large integral membrane proteins solubilized by detergent micelles in water, we have adapted the reverse micelle encapsulation strategy originally developed for the study of large soluble proteins by solution NMR methods. Here we review a novel approach to the solubilization of large integral membrane proteins in reverse micelle surfactants dissolved in low viscosity alkane solvents. The procedure is illustrated with a 54kDa construct of the homotetrameric KcsA potassium channel.
膜蛋白的结构研究或许是后基因组时代最大的挑战之一。尽管膜蛋白占现有及潜在药物靶点的50%以上,但其结构表征却远远落后于可溶性蛋白。核磁共振(NMR)不仅在完整膜蛋白的结构表征方面具有巨大潜力,还可能提供研究小分子配体相互作用细节的能力。然而,溶液核磁共振的尺寸限制将膜蛋白核磁共振结构的全面结构表征局限于相对较小的β桶蛋白或拓扑结构相对简单的螺旋蛋白。为了突破由溶解在水中的去污剂胶束增溶的大型完整膜蛋白分子重排缓慢所带来的障碍,我们采用了最初为通过溶液核磁共振方法研究大型可溶性蛋白而开发的反胶束包封策略。在此,我们综述了一种在溶解于低粘度烷烃溶剂中的反胶束表面活性剂中增溶大型完整膜蛋白的新方法。该方法以同四聚体KcsA钾通道的54kDa构建体为例进行说明。