Suppr超能文献

酿酒酵母对亮氨酸摄取和/或利用的受损情况,被TATA结合蛋白基因的SPT15 - 300等位基因所抑制。

Impaired uptake and/or utilization of leucine by Saccharomyces cerevisiae is suppressed by the SPT15-300 allele of the TATA-binding protein gene.

作者信息

Baerends Richard J S, Qiu Jin-Long, Rasmussen Simon, Nielsen Henrik Bjørn, Brandt Anders

机构信息

Carlsberg Laboratory, DK-2500 Copenhagen Valby, Denmark.

出版信息

Appl Environ Microbiol. 2009 Oct;75(19):6055-61. doi: 10.1128/AEM.00989-09. Epub 2009 Aug 7.

Abstract

Successful fermentations to produce ethanol require microbial strains that have a high tolerance to glucose and ethanol. Enhanced glucose/ethanol tolerance of the laboratory yeast Saccharomyces cerevisiae strain BY4741 under certain growth conditions as a consequence of the expression of a dominant mutant allele of the SPT15 gene (SPT15-300) corresponding to the three amino acid changes F177S, Y195H, and K218R has been reported (H. Alper, J. Moxley, E. Nevoigt, G. R. Fink, and G. Stephanopoulos, Science 314:1565-1568, 2006). The SPT15 gene codes for the TATA-binding protein. This finding prompted us to examine the effect of expression of the SPT15-300 allele in various yeast species of industrial importance. Expression of SPT15-300 in leucine-prototrophic strains of S. cerevisiae, Saccharomyces bayanus, or Saccharomyces pastorianus (lager brewing yeast), however, did not improve tolerance to ethanol on complex rich medium (yeast extract-peptone-dextrose). The enhanced growth of the laboratory yeast strain BY4741 expressing the SPT15-300 mutant allele was seen only on defined media with low concentrations of leucine, indicating that the apparent improved growth in the presence of ethanol was indeed associated with enhanced uptake and/or utilization of leucine. Reexamination of the microarray data published by Alper and coworkers likewise suggested that expression of genes coding for the leucine permeases, Tat1p and Bap3p, were upregulated in the SPT15-300 mutant, as was expression of the genes ARO10, ADH3, ADH5, and SFA1, involved in leucine degradation.

摘要

成功发酵生产乙醇需要对葡萄糖和乙醇具有高耐受性的微生物菌株。据报道,在某些生长条件下,由于与三个氨基酸变化F177S、Y195H和K218R相对应的SPT15基因(SPT15 - 300)的显性突变等位基因的表达,实验室酵母酿酒酵母菌株BY4741的葡萄糖/乙醇耐受性增强(H.阿尔珀、J.莫克斯利、E.内沃伊特、G.R.芬克和G.斯特凡诺普洛斯,《科学》314:1565 - 1568,2006年)。SPT15基因编码TATA结合蛋白。这一发现促使我们研究SPT15 - 300等位基因在各种具有工业重要性的酵母物种中的表达效果。然而,在酿酒酵母、巴氏酵母或 pastorianus酵母(拉格啤酒酵母)的亮氨酸原养型菌株中表达SPT15 - 300,在复杂丰富培养基(酵母提取物 - 蛋白胨 - 葡萄糖)上并不能提高对乙醇的耐受性。仅在含有低浓度亮氨酸的限定培养基上才能看到表达SPT15 - 300突变等位基因的实验室酵母菌株BY4741的生长增强,这表明在乙醇存在下明显改善的生长确实与亮氨酸的摄取和/或利用增强有关。对阿尔珀及其同事发表的微阵列数据的重新审视同样表明,编码亮氨酸通透酶Tat1p和Bap3p的基因的表达在SPT15 - 300突变体中上调,参与亮氨酸降解的基因ARO10、ADH3、ADH5和SFA1的表达也是如此。

相似文献

2
Mutations of the TATA-binding protein confer enhanced tolerance to hyperosmotic stress in Saccharomyces cerevisiae.
Appl Microbiol Biotechnol. 2013 Sep;97(18):8227-38. doi: 10.1007/s00253-013-4985-8. Epub 2013 May 25.
5
Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions.
Appl Microbiol Biotechnol. 2010 Aug;87(5):1821-7. doi: 10.1007/s00253-010-2648-6. Epub 2010 May 12.
6
Isobutanol tolerance and production of Saccharomyces cerevisiae can be improved by engineering its TATA-binding protein Spt15.
Lett Appl Microbiol. 2021 Dec;73(6):694-707. doi: 10.1111/lam.13555. Epub 2021 Oct 13.
7
Effect of overexpression of transcription factors on the fermentation properties of Saccharomyces cerevisiae industrial strains.
Lett Appl Microbiol. 2009 Jul;49(1):14-9. doi: 10.1111/j.1472-765X.2009.02615.x. Epub 2009 Apr 17.
9
Tolerance to acetic acid is improved by mutations of the TATA-binding protein gene.
Environ Microbiol. 2015 Mar;17(3):656-69. doi: 10.1111/1462-2920.12489. Epub 2014 May 20.
10
Engineering yeast transcription machinery for improved ethanol tolerance and production.
Science. 2006 Dec 8;314(5805):1565-8. doi: 10.1126/science.1131969.

引用本文的文献

2
Resistance mechanisms and reprogramming of microorganisms for efficient biorefinery under multiple environmental stresses.
Synth Syst Biotechnol. 2019 Mar 6;4(2):92-98. doi: 10.1016/j.synbio.2019.02.003. eCollection 2019 Jun.
3
Leucine Biosynthesis Is Involved in Regulating High Lipid Accumulation in .
mBio. 2017 Jun 20;8(3):e00857-17. doi: 10.1128/mBio.00857-17.
4
Engineering tolerance to industrially relevant stress factors in yeast cell factories.
FEMS Yeast Res. 2017 Jun 1;17(4). doi: 10.1093/femsyr/fox036.
5
How do yeast cells become tolerant to high ethanol concentrations?
Curr Genet. 2016 Aug;62(3):475-80. doi: 10.1007/s00294-015-0561-3. Epub 2016 Jan 12.
6
Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress.
Eukaryot Cell. 2015 Sep;14(9):884-97. doi: 10.1128/EC.00053-15. Epub 2015 Jun 26.
7
Identification of novel genes responsible for salt tolerance by transposon mutagenesis in Saccharomyces cerevisiae.
J Ind Microbiol Biotechnol. 2015 Apr;42(4):567-75. doi: 10.1007/s10295-015-1584-y. Epub 2015 Jan 23.
8
Improving industrial yeast strains: exploiting natural and artificial diversity.
FEMS Microbiol Rev. 2014 Sep;38(5):947-95. doi: 10.1111/1574-6976.12073. Epub 2014 May 8.
10
Turbidostat culture of Saccharomyces cerevisiae W303-1A under selective pressure elicited by ethanol selects for mutations in SSD1 and UTH1.
FEMS Yeast Res. 2012 Aug;12(5):521-33. doi: 10.1111/j.1567-1364.2012.00803.x. Epub 2012 Apr 23.

本文引用的文献

1
Genome sequence of the lager brewing yeast, an interspecies hybrid.
DNA Res. 2009 Apr;16(2):115-29. doi: 10.1093/dnares/dsp003. Epub 2009 Mar 4.
2
Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae.
FEMS Yeast Res. 2009 Feb;9(1):32-44. doi: 10.1111/j.1567-1364.2008.00456.x. Epub 2008 Nov 13.
3
[gTME for construction of recombinant yeast co-fermenting xylose and glucose].
Sheng Wu Gong Cheng Xue Bao. 2008 Jun;24(6):1010-5. doi: 10.1016/s1872-2075(08)60048-5.
4
Progress in metabolic engineering of Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2008 Sep;72(3):379-412. doi: 10.1128/MMBR.00025-07.
5
Identification of target genes conferring ethanol stress tolerance to Saccharomyces cerevisiae based on DNA microarray data analysis.
J Biotechnol. 2007 Aug 1;131(1):34-44. doi: 10.1016/j.jbiotec.2007.05.010. Epub 2007 May 24.
6
Commonly used Saccharomyces cerevisiae strains (e.g. BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake.
FEMS Microbiol Lett. 2007 Aug;273(2):239-43. doi: 10.1111/j.1574-6968.2007.00798.x. Epub 2007 Jun 15.
7
Challenges in engineering microbes for biofuels production.
Science. 2007 Feb 9;315(5813):801-4. doi: 10.1126/science.1139612.
8
Genetic dissection of ethanol tolerance in the budding yeast Saccharomyces cerevisiae.
Genetics. 2007 Mar;175(3):1479-87. doi: 10.1534/genetics.106.065292. Epub 2006 Dec 28.
9
Engineering yeast transcription machinery for improved ethanol tolerance and production.
Science. 2006 Dec 8;314(5805):1565-8. doi: 10.1126/science.1131969.
10
NCBI GEO: mining tens of millions of expression profiles--database and tools update.
Nucleic Acids Res. 2007 Jan;35(Database issue):D760-5. doi: 10.1093/nar/gkl887. Epub 2006 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验