State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People's Republic of China.
Appl Microbiol Biotechnol. 2010 Aug;87(5):1821-7. doi: 10.1007/s00253-010-2648-6. Epub 2010 May 12.
Global transcription engineering was developed as a tool to reprogram gene transcription for eliciting new phenotypes important for technological applications (Science 2006, 314(5805):1565-1568). A recent report indicated that the beneficial growth advantage of yeast cells expressing the SPT15-300 mutation is the result of enhanced uptake and/or improved utilization of leucine and thus was seen only on defined media with low concentrations of leucine (Appl Environ Microbiol 2009, 75(19):6055-6061). Further investigation towards a leucine-prototrophic strain of industrial lager brewer's yeast indicated that integration one copy of SPT15-300 in SPT15 allele, however, did lead to an increased ethanol tolerance on complex rich medium at high gravity fermentation condition. Under brewing conditions, the SPT15-300 mutant produced 80.78 g/L ethanol from 200 g/L carbohydrates after 384 h, almost twice as much as that of the wild-type strain. The results convinced us that the effect of global regulator modification of yeast is at multi-genes level and is extremely complicated.
全球转录工程被开发为一种工具,用于重新编程基因转录,以引发对技术应用重要的新表型(Science 2006, 314(5805):1565-1568)。最近的一份报告表明,表达 SPT15-300 突变的酵母细胞的有益生长优势是由于增强了亮氨酸的摄取和/或改善了其利用,因此仅在亮氨酸浓度低的限定培养基上可见(Appl Environ Microbiol 2009, 75(19):6055-6061)。进一步研究工业拉格啤酒酵母的亮氨酸营养缺陷型菌株表明,然而,在高重力发酵条件下的复杂丰富培养基中,整合 SPT15-300 到 SPT15 等位基因中的一个拷贝确实导致了乙醇耐受性的提高。在酿造条件下,SPT15-300 突变体在 384 小时后从 200 g/L 碳水化合物中产生了 80.78 g/L 的乙醇,几乎是野生型菌株的两倍。这些结果使我们相信,酵母全局调控因子修饰的效果是在多个基因水平上,并且极其复杂。