Suppr超能文献

用于疫苗开发的源自肺炎支原体功能性粘附素区域的嵌合蛋白构建策略。

Strategy to create chimeric proteins derived from functional adhesin regions of Mycoplasma pneumoniae for vaccine development.

作者信息

Schurwanz Nicol, Jacobs Enno, Dumke Roger

机构信息

Dresden University of Technology, Medical Faculty Carl Gustav Carus, Institute of Medical Microbiology and Hygiene, Fetscherstrasse 74, D-01307 Dresden, Germany.

出版信息

Infect Immun. 2009 Nov;77(11):5007-15. doi: 10.1128/IAI.00268-09. Epub 2009 Aug 10.

Abstract

The cell wall-less bacterium Mycoplasma pneumoniae is one of the most common agents of respiratory tract diseases in humans. Adhesin-mediated binding of the bacteria to host cells is a crucial step in colonization and subsequent pathogenesis. For the first time, we expressed 16 recombinant proteins covering almost the whole major adhesin P1 and the adherence-associated protein P30 to characterize these proteins immunologically and functionally. We describe a new in vitro assay using several human cell lines in combination with fluorescence-activated cell sorting analysis to screen antisera raised against the recombinant proteins quantitatively for adherence inhibition activity. The protein derived from the nearly C-terminal part of the P1 adhesin (amino acids [aa] 1288 to 1518) and the protein P30 (aa 17 to 274) especially showed prominent immunoreactivity with sera from M. pneumoniae-immunized guinea pigs as well as with M. pneumoniae-positive patient sera. We demonstrate that the same protein regions are involved in mediating cytadherence since antibodies against these adhesin regions decrease mycoplasma adhesion to human cells significantly. For further vaccine studies, we optimized the immunogenic and adherence-mediating properties of the antigen by combining both the P1 and the P30 regions in a novel chimeric protein. Antibodies against this protein show an increased reduction of M. pneumoniae adherence to human bronchial epithelial cells by 95%, which is comparable to results with polyspecific anti-M. pneumoniae animal serum. Our strategy results in a promising defined antigen candidate for reducing or even preventing M. pneumoniae colonization of the respiratory tract in future vaccination studies.

摘要

无细胞壁细菌肺炎支原体是人类呼吸道疾病最常见的病原体之一。细菌通过黏附素与宿主细胞结合是定植及后续发病机制中的关键步骤。我们首次表达了16种重组蛋白,这些重组蛋白几乎覆盖了整个主要黏附素P1和黏附相关蛋白P30,以便从免疫学和功能上对这些蛋白进行表征。我们描述了一种新的体外试验,该试验使用几种人类细胞系并结合荧光激活细胞分选分析,以定量筛选针对重组蛋白产生的抗血清的黏附抑制活性。源自P1黏附素近C末端部分(氨基酸[aa]1288至1518)的蛋白和P30蛋白(aa 17至274)尤其与肺炎支原体免疫豚鼠的血清以及肺炎支原体阳性患者血清显示出显著的免疫反应性。我们证明相同的蛋白区域参与介导细胞黏附,因为针对这些黏附素区域的抗体可显著降低支原体对人类细胞的黏附。为了进一步开展疫苗研究,我们通过将P1和P30区域组合在一种新型嵌合蛋白中来优化抗原的免疫原性和黏附介导特性。针对该蛋白的抗体使肺炎支原体对人支气管上皮细胞的黏附减少增加了95%,这与多特异性抗肺炎支原体动物血清的结果相当。我们的策略为未来疫苗研究提供了一种有前景的确定抗原候选物,用于减少甚至预防肺炎支原体在呼吸道的定植。

相似文献

1
3
Designing, Expression and Immunological Characterization of a Chimeric Protein of Mycoplasma pneumoniae.
Protein Pept Lett. 2016;23(7):592-6. doi: 10.2174/0929866523666160502155414.
4
Delineation of immunodominant and cytadherence segment(s) of Mycoplasma pneumoniae P1 gene.
BMC Microbiol. 2014 Apr 28;14:108. doi: 10.1186/1471-2180-14-108.
6
Cloning, expression, and immunological characterization of the P30 protein of Mycoplasma pneumoniae.
Clin Vaccine Immunol. 2008 Feb;15(2):215-20. doi: 10.1128/CVI.00283-07. Epub 2007 Nov 21.
7
Characterisation of subtype- and variant-specific antigen regions of the P1 adhesin of Mycoplasma pneumoniae.
Int J Med Microbiol. 2008 Jul;298(5-6):483-91. doi: 10.1016/j.ijmm.2007.06.002. Epub 2007 Aug 31.
8
Molecular mimicry by Mycoplasma pneumoniae to evade the induction of adherence inhibiting antibodies.
J Med Microbiol. 1995 Dec;43(6):422-9. doi: 10.1099/00222615-43-6-422.
9
Evaluation of P1 adhesin epitopes for the serodiagnosis of Mycoplasma pneumoniae infections.
FEMS Microbiol Lett. 2013 Mar;340(2):86-92. doi: 10.1111/1574-6968.12063. Epub 2013 Feb 6.

引用本文的文献

1
Advances in adhesion-related pathogenesis in infection.
Front Microbiol. 2025 Jul 23;16:1613760. doi: 10.3389/fmicb.2025.1613760. eCollection 2025.
2
Clinical characteristics and risk factors for pneumonia in children.
Front Pediatr. 2024 Dec 23;12:1438631. doi: 10.3389/fped.2024.1438631. eCollection 2024.
3
Reviewing advancement in P30 adhesin protein provides insights for future diagnosis and treatment.
Front Microbiol. 2024 Dec 13;15:1515291. doi: 10.3389/fmicb.2024.1515291. eCollection 2024.
4
Research of recombinant influenza A virus as a vector for Mycoplasma pneumoniae P1a and P30a.
Immun Inflamm Dis. 2024 Sep;12(9):e70021. doi: 10.1002/iid3.70021.
5
Molecular Tools for Typing and .
Front Microbiol. 2022 Jun 2;13:904494. doi: 10.3389/fmicb.2022.904494. eCollection 2022.
6
Characterization of an Immunoglobulin Binding Protein (IbpM) From .
Front Microbiol. 2020 Apr 16;11:685. doi: 10.3389/fmicb.2020.00685. eCollection 2020.
8
: A significant but underrated pathogen in paediatric community-acquired lower respiratory tract infections.
Indian J Med Res. 2018 Jan;147(1):23-31. doi: 10.4103/ijmr.IJMR_1582_16.
10
Effects of Traditional Chinese Medicine Qinbai Qingfei Concentrated Pellet on Cellular Infectivity of Mycoplasma pneumoniae.
Int Sch Res Notices. 2014 Oct 29;2014:751349. doi: 10.1155/2014/751349. eCollection 2014.

本文引用的文献

1
Discovery of new Mycoplasma pneumoniae antigens by use of a whole-genome lambda display library.
Microbes Infect. 2009 Jan;11(1):66-73. doi: 10.1016/j.micinf.2008.10.004. Epub 2008 Oct 21.
2
Cloning, expression, and immunological characterization of the P30 protein of Mycoplasma pneumoniae.
Clin Vaccine Immunol. 2008 Feb;15(2):215-20. doi: 10.1128/CVI.00283-07. Epub 2007 Nov 21.
3
Interaction between the P1 protein of Mycoplasma pneumoniae and receptors on HEp-2 cells.
Microbiology (Reading). 2007 Nov;153(Pt 11):3791-3799. doi: 10.1099/mic.0.2007/010736-0.
5
Characterisation of subtype- and variant-specific antigen regions of the P1 adhesin of Mycoplasma pneumoniae.
Int J Med Microbiol. 2008 Jul;298(5-6):483-91. doi: 10.1016/j.ijmm.2007.06.002. Epub 2007 Aug 31.
7
Tools for the genetic analysis of Mycoplasma.
Int J Med Microbiol. 2007 Feb;297(1):37-44. doi: 10.1016/j.ijmm.2006.11.001. Epub 2007 Jan 16.
8
Culture-independent molecular subtyping of Mycoplasma pneumoniae in clinical samples.
J Clin Microbiol. 2006 Jul;44(7):2567-70. doi: 10.1128/JCM.00495-06.
9
Mutant analysis reveals a specific requirement for protein P30 in Mycoplasma pneumoniae gliding motility.
J Bacteriol. 2005 Sep;187(18):6281-9. doi: 10.1128/JB.187.18.6281-6289.2005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验