Suppr超能文献

细胞生物学家拓展他们的网络。

Cell biologists expand their networks.

作者信息

Short Ben

出版信息

J Cell Biol. 2009 Aug 10;186(3):305-11. doi: 10.1083/jcb.200907093.

Abstract

High-throughput omics technologies generate huge datasets on the protein, transcript, lipid, and metabolite content of cells. By integrating and analyzing these data, systems biologists study complex networks of physical and functional interactions that go beyond the traditional focus on individual proteins or linear pathways. Many cell biologists have greeted these developments with healthy skepticism, complaining that long lists of genes or "hairballs" of interactions provide little insight into biological questions of genuine meaning. As omics techniques move beyond acquisition into hypothesis-driven applications, the chasm between systems biologists and cell biologists is narrowing and the benefits of working together are increasingly clear. While cell biologists need omics and computer analyses to extend their understanding of biological processes, omics scientists need cell biologists to help them interpret and use their vast amounts of data.

摘要

高通量组学技术生成了关于细胞蛋白质、转录本、脂质和代谢物含量的海量数据集。通过整合和分析这些数据,系统生物学家研究超越传统对单个蛋白质或线性途径关注的物理和功能相互作用的复杂网络。许多细胞生物学家对这些进展持审慎的怀疑态度,抱怨一长串基因或相互作用的“毛团”对真正有意义的生物学问题几乎没有提供什么见解。随着组学技术从数据采集转向假设驱动的应用,系统生物学家和细胞生物学家之间的差距正在缩小,合作的好处也越来越明显。虽然细胞生物学家需要组学和计算机分析来扩展他们对生物过程的理解,但组学科学家需要细胞生物学家来帮助他们解释和利用其海量数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/658f/2728399/1ab2b738b9c4/JCB_200907093_Fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验