Suppr超能文献

克服利用计算建模加强实验植物生物学所面临的挑战。

Overcoming the Challenges to Enhancing Experimental Plant Biology With Computational Modeling.

作者信息

Dale Renee, Oswald Scott, Jalihal Amogh, LaPorte Mary-Francis, Fletcher Daniel M, Hubbard Allen, Shiu Shin-Han, Nelson Andrew David Lyle, Bucksch Alexander

机构信息

Donald Danforth Plant Science Center, St. Louis, MO, United States.

Warnell School of Forestry and Natural Resources and Institute of Bioinformatics, University of Georgia, Athens, GA, United States.

出版信息

Front Plant Sci. 2021 Jul 20;12:687652. doi: 10.3389/fpls.2021.687652. eCollection 2021.

Abstract

The study of complex biological systems necessitates computational modeling approaches that are currently underutilized in plant biology. Many plant biologists have trouble identifying or adopting modeling methods to their research, particularly mechanistic mathematical modeling. Here we address challenges that limit the use of computational modeling methods, particularly mechanistic mathematical modeling. We divide computational modeling techniques into either pattern models (e.g., bioinformatics, machine learning, or morphology) or mechanistic mathematical models (e.g., biochemical reactions, biophysics, or population models), which both contribute to plant biology research at different scales to answer different research questions. We present arguments and recommendations for the increased adoption of modeling by plant biologists interested in incorporating more modeling into their research programs. As some researchers find math and quantitative methods to be an obstacle to modeling, we provide suggestions for easy-to-use tools for non-specialists and for collaboration with specialists. This may especially be the case for mechanistic mathematical modeling, and we spend some extra time discussing this. Through a more thorough appreciation and awareness of the power of different kinds of modeling in plant biology, we hope to facilitate interdisciplinary, transformative research.

摘要

对复杂生物系统的研究需要采用计算建模方法,而这些方法目前在植物生物学中未得到充分利用。许多植物生物学家在识别或采用建模方法用于其研究时遇到困难,尤其是机械数学建模。在此,我们探讨限制计算建模方法使用的挑战,特别是机械数学建模。我们将计算建模技术分为模式模型(如生物信息学、机器学习或形态学)或机械数学模型(如生化反应、生物物理学或种群模型),这两种模型在不同尺度上都有助于植物生物学研究,以回答不同的研究问题。对于有兴趣在其研究项目中纳入更多建模的植物生物学家,我们提出了支持更多采用建模的论据和建议。由于一些研究人员发现数学和定量方法是建模的障碍,我们为非专业人员提供了易于使用的工具以及与专业人员合作的建议。机械数学建模可能尤其如此,我们会花一些额外的时间来讨论这一点。通过更全面地认识和了解不同类型建模在植物生物学中的作用,我们希望促进跨学科的变革性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bfd/8329482/ec26a34c3af2/fpls-12-687652-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验