Genchev Georgi Z, Källberg Morten, Gürsoy Gamze, Mittal Anuradha, Dubey Lalit, Perisic Ognjen, Feng Gang, Langlois Robert, Lu Hui
Bioinformatics Program, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
Cell Biochem Biophys. 2009;55(3):141-52. doi: 10.1007/s12013-009-9064-5. Epub 2009 Aug 11.
Efficient communication between the cell and its external environment is of the utmost importance to the function of multicellular organisms. While signaling events can be generally characterized as information exchange by means of controlled energy conversion, research efforts have hitherto mainly been concerned with mechanisms involving chemical and electrical energy transfer. Here, we review recent computational efforts addressing the function of mechanical force in signal transduction. Specifically, we focus on the role of steered molecular dynamics (SMD) simulations in providing details at the atomic level on a group of protein domains, which play a fundamental role in signal exchange by responding properly to mechanical strain. We start by giving a brief introduction to the SMD technique and general properties of mechanically stable protein folds, followed by specific examples illustrating three general regimes of signal transfer utilizing mechanical energy: purely mechanical, mechanical to chemical, and chemical to mechanical. Whenever possible the physiological importance of the example at hand is stressed to highlight the diversity of the processes in which mechanical signaling plays a key role. We also provide an overview of future challenges and perspectives for this rapidly developing field.
细胞与其外部环境之间的高效通讯对于多细胞生物的功能至关重要。虽然信号传导事件通常可被描述为通过受控的能量转换进行信息交换,但迄今为止,研究工作主要集中在涉及化学和电能传递的机制上。在此,我们综述了近期关于机械力在信号转导中作用的计算研究成果。具体而言,我们聚焦于定向分子动力学(SMD)模拟在提供一组蛋白质结构域原子水平细节方面的作用,这些蛋白质结构域通过对机械应变做出适当反应在信号交换中发挥着基本作用。我们首先简要介绍SMD技术以及机械稳定蛋白质折叠的一般特性,随后通过具体例子说明利用机械能进行信号传递的三种一般模式:纯机械模式、机械到化学模式以及化学到机械模式。只要有可能,我们就会强调手头例子的生理重要性,以突出机械信号传导发挥关键作用的过程的多样性。我们还概述了这个快速发展领域未来的挑战和前景。