Chung Minhwan, Zhou Kun, Powell John, Lin Chenxiang, Schwartz Martin A
Yale Cardiovascular Research Center, Department of Internal Medicine (Cardiology) 300 George St., New Haven CT, 06511.
Depart of Cell Biology, Yale School of Medicine.
bioRxiv. 2024 Jun 6:2024.06.06.597759. doi: 10.1101/2024.06.06.597759.
Cellular mechanotransduction, a process central to cell biology, embryogenesis, adult physiology and multiple diseases, is thought to be mediated by force-driven changes in protein conformation that control protein function. However, methods to study proteins under defined mechanical loads on a biochemical scale are lacking. We report the development of a DNA based device in which the transition between single-stranded and double-stranded DNA applies tension to an attached protein. Using a fragment of the talin rod domain as a test case, negative-stain electron microscopy reveals programmable extension while pull down assays show tension-induced binding to two ligands, ARPC5L and vinculin, known to bind to cryptic sites inside the talin structure. These results demonstrate the utility of the DNA clamp for biochemical studies and potential structural analysis.
细胞机械转导是细胞生物学、胚胎发生、成体生理学以及多种疾病的核心过程,被认为是由控制蛋白质功能的蛋白质构象的力驱动变化所介导的。然而,缺乏在生化尺度上研究特定机械负荷下蛋白质的方法。我们报告了一种基于DNA的装置的开发,其中单链和双链DNA之间的转变会对附着的蛋白质施加张力。以踝蛋白杆结构域的一个片段作为测试案例,负染色电子显微镜显示出可编程的伸展,而下拉实验表明张力诱导与两种配体ARPC5L和纽蛋白结合,已知这两种配体与踝蛋白结构内部的隐蔽位点结合。这些结果证明了DNA夹在生化研究和潜在结构分析中的实用性。